精英家教网 > 高中数学 > 题目详情
9.已知正方体ABCD-A1B1C1D1中,E,F分别是A1D1,D1C1的中点,则异面直线EF与AB1所成角为(  )
A.60°B.45°C.90°D.30°

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线EF与AB1所成角.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为2,
则E(1,0,2),F(0,1,2),A(2,0,0),B1(2,2,2),
$\overrightarrow{EF}$=(-1,1,0),$\overrightarrow{A{B}_{1}}$=(0,2,2),
设异面直线EF与AB1所成角为θ,
cosθ=$\frac{|\overrightarrow{EF}•\overrightarrow{A{B}_{1}}|}{|\overrightarrow{EF}|•|\overrightarrow{A{B}_{1}}|}$=$\frac{|2|}{\sqrt{2}•\sqrt{8}}$=$\frac{1}{2}$,
∴θ=60°.
故选:A.

点评 本题考查异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=aex-1-1(x∈R),若方程f(x)+|x-a|=0有且仅有两个不相等的实根,则实数a的取值范围为[0,1)∪{-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.甲、乙两名运动员进行射击训练,已知他们击中目标的环数均稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如表:
甲运动员
射击环数频数频率
710
810
9x
1030y
合计1001
乙运动员
射击环数频数频率
76
810
9z0.4
10
合计80
如果将频率视为概率,回答下面的问题:
(Ⅰ)写出x,y,z的值;
(Ⅱ)求甲运动员在三次射击中,至少有一次命中9环(含9环)以上的概率;
(Ⅲ)若甲运动员射击2次,乙运动员射击1次,用ξ表示这三次中射击击中9环的次数,求ξ的概率分布列及Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,已知c2=(a-b)2+6,C=$\frac{π}{3}$,则△ABC的面积是$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.(x2+3y-y27展开式中,x12y2项系数为(  )
A.7B.-7C.42D.-42

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在空间直角坐标系中,已知三点A(1,0,0),B(1,1,1),C(0,1,1),则三角形ABC 是(  )
A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数y=sinx的图象上所有点的横坐标缩小到原来的$\frac{1}{2}$(纵坐标不变),再将所得到的图象上所有点向左平移$\frac{π}{6}$个单位,所得函数图象的解析式为(  )
A.y=sin(2x-$\frac{π}{3}$)B.y=sin(2x+$\frac{π}{3}$)C.y=sin($\frac{1}{2}$x+$\frac{π}{3}$)D.y=sin($\frac{1}{2}$x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=sinx+tanx,x∈[-$\frac{π}{4}$,$\frac{π}{4}$]的值域是(  )
A.[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]B.[-2,2]C.[-$\frac{\sqrt{2}}{2}$-1,$\frac{\sqrt{2}}{2}$]D.[-$\frac{\sqrt{2}}{2}$-1,$\frac{\sqrt{2}}{2}$+1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设O为坐标原点,P1(x1,y1)和P2(x2,y2)为单位圆上两点,且∠P1OP2=θ,求证:x1x2+y1y2=cosθ.

查看答案和解析>>

同步练习册答案