精英家教网 > 高中数学 > 题目详情
4.(x2+3y-y27展开式中,x12y2项系数为(  )
A.7B.-7C.42D.-42

分析 (x2+3y-y27的展开表示7个因式(x2+3y-y2)的乘积,取6个因式中的x2,另一个因式中-y2,可得x12y2项系数.

解答 解:(x2+3y-y27的展开表示7个因式(x2+3y-y2)的乘积,取6个因式中的x2,另一个因式中-y2
∴x12y2项系数为-${C}_{7}^{6}$=-7.
故选:B.

点评 本题主要考查二项式定理的应用,乘方的意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)在(0,$\frac{π}{2}$)上处处可导,若[f(x)-f′(x)]tanx-f(x)<0,则(  )
A.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$一定小于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
B.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$一定大于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
C.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$可能大于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$
D.$f(ln\frac{3}{2})sin(ln\frac{3}{2})$可能等于$0.6f(ln\frac{5}{2})sin(ln\frac{5}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=3cos(2x+φ)的图象关于点$({\frac{2π}{3},0})$中心对称,则|φ|的最小值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.等差数列{an}中,a2=4,a4+a7=15.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2${\;}^{{a}_{n}-2}$+n,求b1+b2+b3+…+b8的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的三边分别为a,b,c,B=$\frac{π}{3}$,且b=3$\sqrt{3}$,a=2
(1)求sin2A;
(2)求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正方体ABCD-A1B1C1D1中,E,F分别是A1D1,D1C1的中点,则异面直线EF与AB1所成角为(  )
A.60°B.45°C.90°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f(x)=$\left\{\begin{array}{l}{x+2,(x≤0)}\\{(\frac{1}{2})^{x},(x>0)}\end{array}\right.$,则 f[f (-1)]=(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<\frac{π}{2})$的图象经过三点$({0,\frac{1}{8}}),({\frac{5}{12},0}),({\frac{11}{12},0})$,在区间$({\frac{5}{12},\frac{11}{12}})$内有唯一的最小值.
(Ⅰ)求出函数f(x)=Asin(ωx+ϕ)的解析式;
(Ⅱ)求函数f(x)在R上的单调递增区间和对称中心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知全集U={2,4,x2-x+1},B={2,x+1},∁UB={7},求x的值.

查看答案和解析>>

同步练习册答案