分析 (1)利用赋值法令x=y=0即可得到结论.
(2)利用函数奇偶性的定义,结合抽象函数,证明f(x)为奇函数;
(3)根据函数奇偶性的性质结合抽象函数的关系进行递推即可.
解答 解:(1)令x=y=0,得f(0+0)=f(0)+f(0),即f(0)=0.
(2)令y=-x,则f(x-x)=f(x)+f(-x)=0,
即f(-x)=-f(x),
∴函数f(x)是奇函数.
(3)∵f(1)=3,
∴f(2)=f(1)+f(1)=3+3=6,
f(3)=f(1)+f(2)=3+6=9,
∵f(x)是奇函数,
∴f(-3)=-f(3)=-9.
点评 本题主要考查抽象函数的应用,利用赋值法结合函数奇偶性的定义是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com