分析 分别求出命题p,q成立的等价条件,然后根据若p或q为真命题,p且q为假命题,求出实数m的取值范围.
解答 解:∵不等式|x|+|x-1|≥1,
∴要使不等式|x|+|x-1|>m的解集为R,则m<1.
即p:m<1.
函数f(x)=(5-2m)x是增函数,
则5-2m>1,即2m<4,m<2,
即q:m<2.
若p或q为真命题,p且q为假命题,
则p,q一真一假.
若p真,q假,则$\left\{\begin{array}{l}{m<1}\\{m≥2}\end{array}\right.$,此时无解.
若p假,q真,则$\left\{\begin{array}{l}{m≥1}\\{m<2}\end{array}\right.$,
解得1≤m<2.
点评 本题主要考查复合命题与简单命题之间的关系的应用,利用条件先求出命题p,q的等价条件是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 9.5 | 13.5 | 17.5 | 21.5 | 25.5 |
| y | 6 | 4 | 2.8 | 2.4 | 2.2 |
| $\overline{x}$ | $\overline{W}$ | $\overline{y}$ | $\sum_{I=1}^{5}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{I=1}^{5}$(xi-$\overline{x}$)2 | $\sum_{I=1}^{5}$(Wi-$\overline{W}$)(yi-$\overline{y}$) | $\sum_{I=1}^{5}$((Wi-$\overline{W}$)2 |
| 17.5 | 0.06 | 3.5 | -36.8 | 160 | 0.165 | 0.003 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com