精英家教网 > 高中数学 > 题目详情
9.已知命题p:不等式|x|+|x-1|>m的解集为R,命题q:f(x)=(5-2m)x是增函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.

分析 分别求出命题p,q成立的等价条件,然后根据若p或q为真命题,p且q为假命题,求出实数m的取值范围.

解答 解:∵不等式|x|+|x-1|≥1,
∴要使不等式|x|+|x-1|>m的解集为R,则m<1.
即p:m<1.
函数f(x)=(5-2m)x是增函数,
则5-2m>1,即2m<4,m<2,
即q:m<2.
若p或q为真命题,p且q为假命题,
则p,q一真一假.
若p真,q假,则$\left\{\begin{array}{l}{m<1}\\{m≥2}\end{array}\right.$,此时无解.
若p假,q真,则$\left\{\begin{array}{l}{m≥1}\\{m<2}\end{array}\right.$,
解得1≤m<2.

点评 本题主要考查复合命题与简单命题之间的关系的应用,利用条件先求出命题p,q的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.执行如图的算法语句输出结果是2,则输入的x值是(  )
A.0B.2C.-1或2D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求导:
(1)y=$\frac{1}{x}$;
(2)y=x3+2x2+3x+1;
(3)y=x2ex
(4)y=$\frac{12x}{{x}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=|2x-1|-|x+$\frac{3}{2}$|.
(1)解不等式f(x)<0;
(2)若?x0∈R,使得f(x0)+3m2<5m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin2ωx-2sin2ωx+1(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xOy中,若l:$\left\{\begin{array}{l}{x=t}\\{y=t-a}\end{array}\right.$(t为参数)过椭圆C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=3sinφ}\end{array}\right.$(φ为参数)的右顶点,则常数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在一次抽样调查中测得样本的5个样本点,数值如表:
x9.513.517.521.525.5
y642.82.42.2
(1)画散点图,并根据散点图判断,y=bx+a与y=$\frac{b}{x}$+a那一个适宜作为y关于x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)中判断结果及表中数据,求出y关于x的回归方程;
(3)根据(2)中所求回归方程,估计x=40时的y值(精确到小数后1位).
参考数据:①
$\overline{x}$$\overline{W}$$\overline{y}$$\sum_{I=1}^{5}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{I=1}^{5}$(xi-$\overline{x}$)2$\sum_{I=1}^{5}$(Wi-$\overline{W}$)(yi-$\overline{y}$)$\sum_{I=1}^{5}$((Wi-$\overline{W}$)2
17.50.063.5-36.81600.1650.003
表中Wi=$\frac{1}{{x}_{i}}$,$\overline{W}$=$\frac{1}{5}$$\sum_{i=1}^{5}$Wi
②由最小二乘法,回归方程y=bx+a中的b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有(  )种.
A.12B.24C.36D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=-x3+ax-$\frac{1}{4}$,g(x)=ex-e(其中e为自然对数的底数)
(I)若曲线y=f(x)在(0,f(0))处的切线与曲线y=g(x)在(0,g(0))处的切线互相垂直,求实数a的值.
(Ⅱ)设函数h(x)=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\\{\;}\end{array}\right.$,讨论函数h(x)零点的个数.

查看答案和解析>>

同步练习册答案