【题目】火把节是彝族、白族、纳西族、基诺族、拉祜族等民族的古老传统节日,有着深厚的民俗文化内涵,被称为“东方的狂欢节”凉山州旅游局为了解民众对火把节知识的知晓情况,对西昌市区 A,B 两小区的部分居民开展了问卷调查,他们得分(满分100分)数据,统计结果如下:
A小区 | ||||
得分范围/分 | ||||
频率 |
B小区
(1)以每组数据的中点值作为该组数据的代表,求B小区的平均分;
(2)若A小区得分在内的人数为人,B小区得分在内的人数为人,求在 A,B 两小区中所有参加问卷调查的居民中得分不低于分的频率;
科目:高中数学 来源: 题型:
【题目】如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2. 若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,,,,.
(1)求证:;
(2)若,,为的中点.
(i)过点作一直线与平行,在图中画出直线并说明理由;
(ii)求平面将三棱锥分成的两部分体积的比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,在正方体中,点分别为棱,的中点,点为上底面的中心,过三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连接和的任一点,设与平面所成角为,则的最大值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是定义在R上的偶函数且以2为周期,则“为上的增函数”是“为上的减函数”的
A. 充分而不必要的条件B. 必要而不充分的条件
C. 充要条件D. 既不充分也不必要的条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆的离心率为,且椭圆短轴的一个顶点到一个焦点的距离等于.
(1)求椭圆的方程;
(2)设经过点的直线交椭圆于,两点,点.
①若对任意直线总存在点,使得,求实数的取值范围;
②设点为椭圆的左焦点,若点为的外心,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,命题p:x∈[-2,-1],x2-a≥0,命题q:.
(1)若命题p为真命题,求实数a的取值范围;
(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.程度2019年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到下边频率分布直方图,且规定计分规则如下表:
每分钟跳绳个数 | ||||
得分 | 17 | 18 | 19 | 20 |
(Ⅰ)现从样本的100名学生中,任意选取2人,求两人得分之和不大于35分的概率;;
(Ⅱ)若该校初三年级所有学生的跳绳个数服从正态分布,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差(各组数据用中点值代替).根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:
预计全年级恰有2000名学生,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)
若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195以上的人数为ξ,求随机变量的分布列和期望.
附:若随机变量服从正态分布,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若采用随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数:
7327 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该运动员射击4次至少击中3次的概率为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com