精英家教网 > 高中数学 > 题目详情
3.设函数f(x)=x2-2ex-$\frac{lnx}{x}$+a(其中e为自然对数的底数,若函数f(x)至少存在一个零点,则实数a的取值范围是(  )
A.$({0,{e^2}-\frac{1}{e}}]$B.$({0,{e^2}+\frac{1}{e}}]$C.$[{{e^2}-\frac{1}{e},+∞})$D.$({-∞,{e^2}+\frac{1}{e}}]$

分析 令f(x)=0,求出a=-x2+2ex+$\frac{lnx}{x}$,构造函数h(x)=-x2+2ex+$\frac{lnx}{x}$,判断函数的单调性,根据函数单调性求出函数的最值.

解答 解:令f(x)=x2-2ex-$\frac{lnx}{x}$+a=0,
则a=-x2+2ex+$\frac{lnx}{x}({x>0})$,
设h(x)=-x2+2ex+$\frac{lnx}{x}$,
令h1(x)=-x2+2ex,h2(x)=$\frac{lnx}{x}$,
∴h2′(x)=$\frac{1-lnx}{x^2}$,发现函数h1(x),h2(x)在(0,e)上都是单调递增,在[e,+∞)上都是单调递减,
∴函数h(x)=-x2+2ex+$\frac{lnx}{x}$在(0,e)上单调递增,在[e,+∞)上单调递减,
故当x=e时,得h(x)min=e2+$\frac{1}{e}$,
∴函数f(x)至少存在一个零点需满足a≤h(x)max
即a≤e2+$\frac{1}{e}$.
故选:D.

点评 本题考查了函数的图象与性质的应用问题,以及函数与方程的关系,进行解答,是易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,已知直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB交AB于点D(不为原点).
(Ⅰ)求点D的轨迹方程;
(Ⅱ)若点D坐标为(2,1),求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义在区间[-3,3]上的单调函数f(x)满足:对任意的x∈[-3,3],都有f(f(x)-2x)=6,则在[-3,3]上随机取一个实数x,使得f(x)的值不小于4的概率为(  )
A.$\frac{1}{6}$B.$\frac{5}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆O:x2+y2=4与x轴交于A,B两点,点M为圆O上异于A,B的任意一点,圆O在点M处的切线与圆O在点A,B处的切线分别交于C,D,直线AD和BC交于点P,设P点的轨迹为曲线E.
(1)求曲线E的方程;
(2)曲线E与y轴正半轴交点为H,则曲线E是否存在直角顶点为H的内接等腰直角三角形Rt△GHK,若存在,求出所有满足条件的Rt△GHK的两条直角边所在直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知球的直径SC=2$\sqrt{5}$,A,B是该球球面上的两点,若AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的表面积为(  )
A.22B.16C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A,B,C是△ABC的三个内角,A,B,C所对的边分别为a,b,c,设平面向量$\overrightarrow{m}$=(cosB,sinB),$\overrightarrow{n}$=(cosC,-sinC),$\overrightarrow{m}$与$\overrightarrow{n}$所成的夹角为120°.
(1)求A的值.
(2)若△ABC的面积S=$\frac{8\sqrt{3}}{3}$,sinC=2sinB,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$,且函数$f(x+\frac{π}{12})$是偶函数,则下列判断正确的是(  )
A.函数f(x)的最小正周期为2π
B.函数f(x)在区间$[\frac{3π}{4},π]$上单调递增
C.函数f(x)的图象关于直线$x=-\frac{7π}{12}$对称
D.函数f(x)的图象关于点$(\frac{7π}{12},0)$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=xlnx-$\frac{a}{2}$x2在定义域内有极值,则实数a的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知关于x方程|log1.4|x-1||=1.4|x-1|,则该方程的所有根的和为6.

查看答案和解析>>

同步练习册答案