精英家教网 > 高中数学 > 题目详情
8.甲、乙两人做“石头、剪刀、布”游戏,两人平局的概率为(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

分析 本题是一个古典概型,试验发生包含的所有的基本事件的个数是3×3,满足条件的事件A含3个基本事件,古典概型的概率计算公式,得到结果.

解答 解:由题意知本题是一个古典概型,
试验发生包含的所有的基本事件的个数是3×3=9;
设平局为事件A,
满足条件的事件A含3个基本事件,
由古典概型的概率计算公式,
可得:P(A)=$\frac{3}{9}$=$\frac{1}{3}$,
故选:C.

点评 本题考查利用分布计数原理计算基本事件的公式、利用古典概型概率公式求事件的概率,本题是一个基础题,在解题过程中基本事件数和满足条件的事件数显而易见.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.(1)化简$\frac{{cos(α-\frac{π}{2})}}{{sin(\frac{5π}{2}+α)}}$•sin(α-2π)•cos(2π-α)
(2)求值sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{25π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在2016年高考来临之际,食堂的伙食进行了全面升级.某日5名同学去食堂就餐,有米饭,花卷,包子和面条四种主食.每种主食均至少有一名同学选择且每人只能选择其中一种.花卷数量不足仅够一人食用,甲同学因肠胃不好不能吃米饭,则不同的食物搭配方案种数为132.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.有一个不透明的袋子,装有三个形状完全相同的小球,球上分别编有数字1,2,3.
(Ⅰ)若逐个不放回的取两次,求第一次取到球的编号为偶数且两个球的编号之和能被3 整除的概率;
(Ⅱ)若有放回的取两次,编号依次为a,b,求直线ax+by+1=0与圆x2+y2=$\frac{1}{9}$有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)如果f($\frac{1}{x}$)=$\frac{x}{1-x}$,则当x≠0且x≠1时,求f(x)的解析式;
(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设点M(x,y)在|x|≤1,|y|≤1时按均匀分布出现,试求满足:
(1)x+y≥0的概率;   
(2)x+y<1的概率;   
(3)x2+y2≥1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题P:函数f(x)=|x+a|在区间(-∞,-1)上是单调函数,命题q:函数g(x)=loga(x+a)(a>0,且a≠1),在(-2,+∞)上是增函数,则?p成立是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,设D=BC边的中点,则向量$\overrightarrow{AD}$等于(  )
A.$\overrightarrow{AB}$+$\overrightarrow{AC}$B.$\overrightarrow{AB}$-$\overrightarrow{AC}$C.$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)D.$\frac{1}{2}$($\overrightarrow{AB}$-$\overrightarrow{AC}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.判断下列对应关系是否为函数.
(1)A=R,B=R,对任意的x∈A,x→$\sqrt{x}$;
(2)A=R,B={0,1},对应关系f:当x为有理数时,f(x)=1;当x为无理数时,f(x)=0;
(3)A=B=N*,对任意的x∈A,x→|x-5|.

查看答案和解析>>

同步练习册答案