精英家教网 > 高中数学 > 题目详情
13.设点M(x,y)在|x|≤1,|y|≤1时按均匀分布出现,试求满足:
(1)x+y≥0的概率;   
(2)x+y<1的概率;   
(3)x2+y2≥1的概率.

分析 满足|x|≤1,|y|≤1的点组成一个边长为2的正方形ABCD,分别求出相应的面积,即可求出相应概率.

解答 解:(1)如图,满足|x|≤1,|y|≤1的点组成一个边长为2的正方形ABCD,则S正方形ABCD=4;
x+y=0的图象是AC所在直线,满足x+y≥0的点在AC的右上方,
即在△ACD内(含边界),
而S△ACD=$\frac{1}{2}$S正方形ABCD=2,
所以P(x+y≥0)=$\frac{2}{4}$=$\frac{1}{2}$.
(2)在|x|≤1,|y|≤1且x+y<1的面积为4-$\frac{1}{2}×1×1$=$\frac{7}{2}$,
所以P(x+y<1)=$\frac{7}{8}$.
(3)在|x|≤1,|y|≤1且x2+y2≥1的面积为4-π,
所以P(x2+y2≥1)=1-$\frac{π}{4}$.

点评 本题考查几何概型,考查面积的计算.二元的不等式问题,可以利用平面直角坐标系转化为平面上的点集求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.用数学归纳法证明不等式1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^n}-1}}$>$\frac{n}{2}$(n∈N*),则n=k+1与n=k相比,不等式左边增加的项数是(  )
A.1B.k-1C.kD.2k

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=x3-3x2的极小值是-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC的三个顶点坐标分别为A(2,4),B(0,-2),C(-2,3),
(1)求BC边上的中线与BC边上的高所在的直线方程
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.甲、乙两人做“石头、剪刀、布”游戏,两人平局的概率为(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知边长为4的等边△ABC中,|PA|=1,在点P的轨迹上任取一点E,则$\overrightarrow{BE}$$•\overrightarrow{CE}$的最大值为(  )
A.4B.6C.8+4$\sqrt{3}$D.9+4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在一个边长为5cm的正方形内部画一个边长为2cm的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是$\frac{4}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=ax2-1,a为一个正数,且f[f(-1)]=-1,那么a的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.学了异面直线的概念和作法后,老师出了下面一道题:“已知平面α,β,直线a,b为异面直线,a?α,b?β,α∩β=c,请问:直线c与直线a,b有怎样的位置关系?”甲、乙、丙、丁四位同学给出了四种不同的答案,甲:c与a,b都不相交;乙:c与a,b都相交;丙:c至少与a,b中的一条相交;丁:c至多与a,b中的一条相交.问:他们的答案中哪些是正确的?哪些是错误的?请说明理由.

查看答案和解析>>

同步练习册答案