精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sinωxcosωx+cos2ωx,x∈R,ω>0.
(1)求函数f(x)的值域;
(2)若函数f(x)的最小正周期为
π
2
,则当x∈[0,
π
2
]时,求f(x)的单调递减区间.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:(1)首先,化简函数解析式,然后,根据正弦函数的性质进行确定该函数的值域即可;
(2)根据周期公式,确定ω=2,然后,求解函数的单调递减区间.
解答: 解:(1)f(x)=
3
sin2ωx+cos2ωx=sin(2ωx+
π
6
)+
1
2

∵x∈R,∴f(x)的值域为[-1,1],
(2)∵f(x)的最小正周期为
π
2

=
π
2
,即ω=2
f(x)=2sin(4x+
π
6
)

x∈[0,
π
2
]

∴4x+
π
6
∈[
π
6
13
6
π]

∵f(x)递减,
∴4x+
π
6
∈[
π
2
2
]

π
2
≤4x+
π
6
2

得到
π
12
≤x≤
π
3

∴f(x)单调递减区间为[
π
12
π
3
]
点评:本题综合考查了三角函数的图象与性质,三角恒等变换公式、二倍角公式等知识,属于综合性问题,中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)求值:sin50°(1+
3
tan10°);
(2)已知sin(α+2β)=3sinα,求
tan(α+β)
tanβ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A、B、C的对边,2bcosC=2a-c.
(Ⅰ)求B;
(Ⅱ)若点M为边BC的中点,AM=2
3
,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx+sin2x-
5
2
,x∈R

(1)求函数f(x)最大值和最小正周期;
(2)设△ABC内角A、B、C所对的边分别为a、b、c,且c=3,f(C)=-1.若sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f)=2cos2x+
3
sin2x+a(a∈R)
(1)求函数f(x)的周期及对称轴方程;
(2)若函数f(x)在区间[0,
π
2
]上的最小值为5,求函数f(x)在[0,
π
2
]区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
cos2x+
3
2
sinx•cosx-
1
4

(Ⅰ)求f(x)的最小正周期和值域;
(Ⅱ)若a是第一象限的角,且f(
a
2
-
π
12
)=
3
4
,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2cos4x-3cos2x+1
cos2x
,求它的定义域和值域,并判断它的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a1=λ,an+1=
2
3
an+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.
(1)对任意实数λ,求证:a1,a2,a3不成等比数列;
(2)试判断数列{bn}是否为等比数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知曲线C1上的任意一点到点A(-1,0),B(1,0)的距离之和为2
2

(Ⅰ)求曲线C1的方程;
(Ⅱ)设椭圆C2:x2+
3y2
2
=1,若斜率为k的直线OM交椭圆C2于点M,垂直于OM的直线ON交曲线C1于点N.
(i)求证:|MN|的最小值为
2

(ii)问:是否存在以原点为圆心且与直线MN相切的圆?若存在,求出圆的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案