精英家教网 > 高中数学 > 题目详情
18.已知a,b>0,若$\frac{2}{a}$+$\frac{1}{b}$=1,则2a+b的最小值时(  )
A.9B.8C.7D.6

分析 根据$\frac{2}{a}$+$\frac{1}{b}$=1可对2a+b用乘“1”法,再利用基本不等式求出最小值即可.

解答 解:∵$\frac{2}{a}$+$\frac{1}{b}$=1,a,b>0,
∴2a+b=(2a+b)•1=(2a+b)•($\frac{2}{a}$+$\frac{1}{b}$)=4+$\frac{2b}{a}$+$\frac{2a}{b}$+1≥2$\sqrt{\frac{2b}{a}•\frac{2a}{b}}$+5=2×2+5=9.
当且仅当a=b=3时取等号.
故选:A.

点评 本题考查了基本不等式的运用:求最值,注意运用乘“1”法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.对具有线性相关关系的变量x,y,有一组观察数据(xi,yi)(i=1,2,…8),其回归直线方程是:$\widehat{y}$=2x+a,且x1+x2+x3+…+x8=8,y1+y2+y3+…+y8=16,则实数a的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设x∈R,向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,-6),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.-4B.2$\sqrt{10}$C.2$\sqrt{5}$D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点 O(0,0),A(2,1),B(-2,4),向量$\overrightarrow{OM}$=$\overrightarrow{OA}$+λ$\overrightarrow{OB}$.
(I )若点M在第二象限,求实数λ的取值范围
(II)若λ=1,判断四边形OAMB的形状,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设Tn是数列{an}的前n项之积,并满足:Tn=1-an(n∈N*).
(Ⅰ)求a1,a2,a3
(Ⅱ)证明数列{$\frac{1}{{T}_{n}}$}等差数列;
(Ⅲ)令bn=$\frac{{a}_{n}}{{n}^{2}+n}$,证明{bn}前n项和Sn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正项等差数列{an}的前n(n∈N*)项和为Sn,a3=3,且λSn=anan+1,在正项等比数列{bn}中,b1=2λ,b3=a15+1.
(1)求数列{an}及{bn}的通项公式;
(2)设数列{cn}的前n(n∈N*)项和为Tn,且cn=$\left\{\begin{array}{l}{{a}_{n}+1,n为正奇数}\\{{b}_{n},n为正偶数}\end{array}\right.$,求不等式T2n<n2+n+480的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=-x2+2ax+3a2
(1)当a=-1时,求不等式f(x)<-5的解集;
(2)若f(x)>0对任意实数x∈[-1,1]都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知p:m>-2,q:f(x)=x2+2mx+1在区间(1,+∞)上单调递增,则p是q的(  )
A.充要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下联表:(  )
  女 男 总计
 读营养说明 16 28 44
 不读营养说明 20 8 28
 总计 36 3672
参考公式:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 p(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.706 3.841 5.024 6.635 7.89710.828
则根据以上数据:
A.能够以99.5%的把握认为性别与读营养说明之间无关系
B.能够以99.9%的把握认为性别与读营养说明之间无关系
C.能够以99.5%的把握认为性别与读营养说明之间有关系
D.能够以99.9%的把握认为性别与读营养说明之有无关系

查看答案和解析>>

同步练习册答案