精英家教网 > 高中数学 > 题目详情
10.已知A、B、C的坐标分别是A(3,0),B(0,3),C(cosα,sinα).
(1)若|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,求角α的值;
(2)若$\overrightarrow{AC}$•$\overrightarrow{BC}$=-1,求$\frac{{2{{sin}^2}α+2sinαcosα}}{1+tanα}$的值.

分析 (1)求出向量坐标,根据向量模长公式建立方程进行求解即可.
(2)根据向量数量积的定义建立方程关系,结合三角函数的三角公式进行化简即可得到结论.

解答 解:(1)∵A(3,0),B(0,3),C(cosα,sinα).
∴$\overrightarrow{AC}$=(cosα-3,sinα),$\overrightarrow{BC}$=(cosα,sinα-3),
∵$|{\overrightarrow{AC}}|=|{\overrightarrow{BC}}|$,
∴$\sqrt{(cosα-3)^{2}+si{n}^{2}α}$=$\sqrt{co{s}^{2}α+(sinα-3)^{2}}$,
整理得$sinα=cosα知α=kπ+\frac{π}{4},k$∈Z.
(2)若$\overrightarrow{AC}•\overrightarrow{BC}=-1$,得(cosα-3,sinα)•(cosα,sinα-3)=-1,
即cosα(cosα-3)+sinα(sinα-3)=-1,
整理得$sinα+cosα=\frac{2}{3}$,
两边平方得2sinαcosα=$-\frac{5}{9}$,
则$\frac{{2{{sin}^2}α+2sinαcosα}}{1+tanα}$=$\frac{2si{n}^{2}α+2sinαcosα}{1+\frac{sinα}{cosα}}$
=$\frac{2sinα(sinα+cosα)}{\frac{sinα+cosα}{cosα}}$=2sinαcosα=$-\frac{5}{9}$.

点评 本题主要考查平面向量数量积的应用以及向量和三角函数的综合,根据相应的三角公式以及向量的坐标公式进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知动圆M的圆心M在y轴右侧,且动圆M与圆(x-1)2+y2=1外切,与y轴相切.
(1)求点M的轨迹E的方程;
(2)已知点G(m,0)(m>0)为曲线E内的一定点,过点G作两条直线l1,l2分别交曲线E于点A、B与点C、D,且P、Q分别是AB、CD的中点,若l1,l2的斜率之和为1,求证:直线PQ过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知非零向量$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a}$|=1,且($\overrightarrow a$-$\overrightarrow b$)•($\overrightarrow a$+$\overrightarrow b$)=$\frac{3}{4}$.
(1)求|${\overrightarrow b}$|;  
 (2)当$\overrightarrow a$•$\overrightarrow b$=-$\frac{1}{4}$时,求向量$\overrightarrow a$与$\overrightarrow a$+2$\overrightarrow b$的夹角θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.( I)设复数z满足(1+i)z=2,其中i为虚数单位,求复数z.
( II)实数m取何值时,复数z=m2-1+(m2-3m+2)i,
( i)是实数;
( ii)是纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$x2-mln$\sqrt{1+2x}$+mx-2m,m<0.
(1)当m=-1时,求函数y=f(x)-$\frac{x}{3}$的单调区间;
(2)已知m≤-$\frac{e}{2}$(其中e是自然对数的底数),若存在实数x0∈(-$\frac{1}{2}$,$\frac{e-1}{2}$],使f(x0)>e+1成立,求m的范围;
(3)证明:$\sum_{k=1}^n{\frac{8k-3}{{3{k^2}}}}$>ln$\frac{(n+1)(n+2)}{2}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l:x-2y-2$\sqrt{5}$=0与x,y轴分别交于点M,N,P是圆C:x2+y2=2上任意一点.
(Ⅰ)求△PMN面积的最小值;
(Ⅱ)求点P到直线l的距离小于1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=x3-3x-a在(1,2)内有零点,则实数a的取值范围是(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知椭圆C:$\left\{{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}(φ为参数)}$,直线L:$\left\{{\begin{array}{l}{x=4-2t}\\{y=3-t}\end{array}(t为参数)}$
(Ⅰ)化C,L的方程为普通方程;
(Ⅱ)求过椭圆C的右焦点且与直线L平行的直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知:$\overrightarrow a$=(-$\sqrt{3}$sinωx,cosωx),$\overrightarrow b$=(cosωx,cosωx),ω>0,记函数f(x)=$\overrightarrow a$•$\overrightarrow b$,且f(x)的最小正周期为π.
(1)求ω的值;
(2)解不等式f(x)≥1.

查看答案和解析>>

同步练习册答案