精英家教网 > 高中数学 > 题目详情
已知0<x<1,则x2(1-x)的最大值是
 
考点:基本不等式
专题:不等式的解法及应用
分析:变形利用均值不等式即可得出.
解答: 解:∵0<x<1,∴x2(1-x)=
1
2
x•x(2-2x)
1
2
(
x+x+2-2x
3
)3
=
4
27
,当且仅当x=
2
3
时取等号.
∴x2(1-x)的最大值是
4
27

故答案为:
4
27
点评:本题考查了均值不等式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα=-
5
5
,tanβ=-
1
3
,且α、β∈(-
π
2
,0).
(1)求tan2β的值
(2)求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x),其图象是连续不断的,如果存在非零常数λ(λ∈R),使得对任意的x∈R,都有f(x+λ)=λf(x),则称f(x)为“倍增函数”,λ为“倍增系数”.下列命题正确的是
 
(写出所有正确命题的编号).
①函数f(x)=x是倍增函数,且倍增系数λ=1;
②函数f(x)=e-x是倍增函数,且倍增系数λ∈(0,1);
③若函数f(x)是可导倍增函数,则其导函数f′(x)也是倍增函数;
④若函数f(x)是倍增系数λ=-1的倍增函数,则f(x)也是周期函数;
⑤若函数f(x)=cos2ωx(ω>0)是倍增函数,则ω=
2
(k∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知四面体A-BCD的外接球的球心O在线段BD上,且AO⊥平面BCD,BC=
3
2
BD,若四面体A-BCD的体积为
3
2
,则球O的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2(-
1
2
≤x≤
1
2
)图象上一点P,以点P为切点的切线为直线l,则直线l的倾斜角的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)及其导数f′(x),若存在x0,使得f(x0)=f′(x0),则称x0是f(x)的一个“巧值点”,下列函数中,有“巧值点”的函数个数是
 
(只填数字)
①f(x)=x2
②f(x)=e-x
③f(x)=lnx
④f(x)=x+
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(x-2)2,x∈(-1,3),函数f(x+1)的单调减区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|0≤x<1},B={x|1≤x≤3},函数f(x)=
3x,x∈A
6-2x,x∈B
,当x0∈A且f[f(x0)]∈A时,x0的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,SB⊥底面ABCD.底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是
 

查看答案和解析>>

同步练习册答案