精英家教网 > 高中数学 > 题目详情
已知sinα=-
5
5
,tanβ=-
1
3
,且α、β∈(-
π
2
,0).
(1)求tan2β的值
(2)求tan(α+β)的值.
考点:两角和与差的正切函数
专题:三角函数的求值
分析:(1)由条件利用二倍角的正切公式求得tan2β的值.
(2)由条件利用同角三角函数的基本关系求得 cosα和tanα 的值,再利用两角和的正切公式求得tan(α+β)的值.
解答: 解:(1)∵tanβ=-
1
3
,∴tan2β=
2tanβ
1-tan2β
=
-
2
3
1-
1
9
=-
3
4

(2)∵sinα=-
5
5
,且α、β∈(-
π
2
,0),∴cosα=
2
5
5
,tanα=
sinα
cosα
=-
1
2

∴tan(α+β)=
tanα+tanβ
1-tanαtanβ
=-1.
点评:本题主要考查同角三角函数的基本关系、二倍角的正切公式,两角和的正切公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB=90°,AB∥CD,AD=CD=2AB=2,E,F分别是PC,CD的中点.
(Ⅰ)证明:CD⊥平面BEF;
(Ⅱ)设PA=k•AB,且二面角E-BD-C为60°,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
+alnx(a为参数).
(1)若a=1,求函数f(x)单调区间;
(2)当x∈(0,e]时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xex
(Ⅰ)求函数F(x)=f(x)+a(
1
2
x2+x)(a>-
1
e
)的单调区间;
(Ⅱ)设函数g(x)=f(-2-x),证明:当x>-1时,f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

9名数学家,每人至多会3种语言,每3人至少有两人能通话,
(1)证明:至少有3人会同一种语言;
(2)如果把9名改为8名数学家,(1)中结论还成立吗?

查看答案和解析>>

科目:高中数学 来源: 题型:

AB为圆O的直径,点E、F在圆上,AB∥EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1
(Ⅰ)求证:BF⊥平面DAF
(Ⅱ)求平面ADF与平面CDFE所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A(
2
2
2
2
),B(-
2
2
2
2
),C(-
2
2
,-
2
2
),D(
2
2
,-
2
2
),从这4点中随机取2点.
(1)求这两点与原点O(0,0)共线的概率;
(2)求这两点与原点O(0,0)恰好构成直角三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD中,PA⊥平面ABCD,且PA=4,底面为直角梯形,∠CDA=∠BAD=90°,AB=2,CD=1,AD=
2
,M,N分别是PD,PB的中点.
(1)设Q为线段AP上一点,若MQ∥平面PCB,求CQ的长; 
(2)求平面MCN与底面ABCD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<x<1,则x2(1-x)的最大值是
 

查看答案和解析>>

同步练习册答案