精英家教网 > 高中数学 > 题目详情
如图,已知=
3
2
,|F2F4|=
3
-1是圆O的两条弦,C2,F1,C1,则圆O的半径等于
 

考点:与圆有关的比例线段
专题:立体几何
分析:设BC与AO的交点为D,由AO⊥BC知,D是BC的中点,由垂径定理能求出圆O的半径.
解答: 解:设BC与AO的交点为D,
由AO⊥BC知,D是BC的中点,
因为BC=2
2
,所以BD=
2
,所以AD=1,
设半径为r,则(r-1)2+(
2
)2=r2
,解得r=
3
2

故答案为:
3
2
点评:本题考查圆的半径的求法,是中档题,解题时要认真审题,注意垂径定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线一焦点坐标为(0,-5),一渐近线方程为3x+4y=0,则双曲线的离心率为(  )
A、
3
4
B、
5
4
C、
5
3
5
4
D、
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn}满足a1=1,a2=2,b1=2,且对任意的正整数i,j,k,l,当i+j=k+l时都有ai+bj=ak+bl,则
1
2014
2014
i=1
(ai+bi)的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河流上游六月份的降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5,
现已知近20年的X值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.
(Ⅰ)求频率分布表中a,b,c的值,并求近20年降雨量的中位数和平均数;
近20年六月份降雨量频率分布
降雨量70110140160200220
频率
1
20
a
1
5
b
3
20
c
(Ⅱ)假定2015年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求2015年六月份该水力发电站的发电量不低于505万千瓦时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3
sin
πx
m
,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+a4=3,a6=5.
(1)求数列{an}的通项公式;
(2)如果bn=2an,求数列{bn}的前10项的和S10

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足
x+y-2≤2
2x-y+2≥0
y≥0
,则z=y-x的最大值为(  )
A、2B、-2C、1D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.在晚高峰时段(T≥2),从贵阳市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.
(1)求出轻度拥堵、中度拥堵、严重拥堵的路段各有多少个?
(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽出6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽取的6个路段中任取2个,求至少一个路段为轻度拥堵的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=
1
2
(|x-a2|+|x-2a2|-3a2)

(1)当a=1时,求不等式f(x)>1的解集;
(2)若?x∈R,f(x-1)≤f(x),求实数a的取值范围.

查看答案和解析>>

同步练习册答案