精英家教网 > 高中数学 > 题目详情
19.若集合A={1,9},B={-1,x2},则“x=3”是“A∩B={9}”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

分析 根据集合的关系以及充分条件和必要条件的定义进行判断即可.

解答 解:若A∩B={9},则x2=9,即x=3或x=-3,
则“x=3”是“A∩B={9}”的充分不必要条件,
故选:B.

点评 本题主要考查充分条件和必要条件的判断,根据集合的关系求出x的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点与抛物线C2:x2=4y的焦点重合,F1、F2分别是椭圆C1的左、右焦点,C1的离心率e=$\frac{\sqrt{2}}{2}$,过F2的直线l与椭圆C1交于M,N两点,与抛物线C2交于P,Q两点.
(1)求椭圆C1的方程;
(2)当直线l的斜率k=-1时,求△PQF1的面积;
(3)在x轴上是否存在点A,$\overrightarrow{AM}$•$\overrightarrow{AN}$为常数?若存在,求出点A的坐标和这个常数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的半焦距为c,且b=c,椭圆的上顶点到右顶点的距离为2$\sqrt{3}$.
(1)求椭圆的方程;
(2)已知点F是椭圆的右焦点,C(m,0)是线段OF上一个动点(O为坐标原点),是否存在过点F且与x轴不垂直的直线l与椭圆交于A,B两点,使得AC|=|BC|,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线l1:(m-1)x-y+2m+1=0与圆C:(x+2)2+(y-3)2=$\sqrt{2}$的位置关系是(  )
A.相交B.相切C.相离D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=x2+ax-$\frac{b^2}{4}+1{,_{\;}}$g(x)=2x,
(1)若A={t∈N*|t2-10t+9≤0},当a,b∈A时,求f(x)>g(x)恒成立的概率;
(2)若B=[0,9],当a,b∈B时,求f(x)>g(x)恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知定点F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)曲线C是使得|RF1|+|RF2|为定值(大于|F1F2|)的点R的轨迹,且曲线C过点T(0,1).
(1)求曲线C的方程;
(2)若直线l过点F2,且与曲线C交于P,Q两点,当△F1PQ的面积取得最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30)20.05
合计M1
(1)求出表中M、p及图中a的值;
(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间[20,25)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列叙述中,是随机变量的有(  )
①某工厂加工的零件,实际尺寸与规定尺寸之差;②标准状态下,水沸腾的温度;③某大桥一天经过的车辆数;④向平面上投掷一点,此点坐标.
A.②③B.①②C.①③④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=ax3+bx2+cx+d在x=0处的切线方程为8x+y-1=0,且函数f(x)在x=-2和x=4处有极值.
(1)求函数f(x)的解析式;
(2)求函数f(x)在x∈[-3,3]的最大值.

查看答案和解析>>

同步练习册答案