精英家教网 > 高中数学 > 题目详情
17.如图,E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA上的点如果四边形EFGH为平行四边形,求证:AC∥平面EFGH.

分析 E、F分别是AB、BC的中点,得EF∥AC,由此能证明AC∥平面EFGH.

解答 证明:∵E、F分别是AB、BC的中点,
∴EF∥AC,
∵AC?平面EFGH,EF?平面EFGH,
∴AC∥平面EFGH.

点评 本题主要考查直线与平面平行的证明,解题时要认真审题,注意三角形中位线定理的灵活运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.二项式${(ax-\frac{{\sqrt{3}}}{6})^3}$(a>0)的展开式的第二项的系数为-$\frac{{\sqrt{3}}}{2}$,则$\int_{-2}^a{x^2}$dx的值为(  )
A.3或$\frac{7}{3}$B.$\frac{7}{3}$C.3D.3或$-\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若如图所示的程序框图输出的S是126,则条件①可以为(  )
A.n≤5B.n≤6C.n≤7D.n≤8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设a>b>0,则a2+$\frac{1}{4b(a-b)}$的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知{an}为等差数列,公差为1,且a5是a3与a11的等比中项,则a1=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.sin15°sin75°=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在直角坐标系中,定义两点A(x1,y1),B(x2,y2)之间的“直角距离”为d(A,B)=|x1-x2|+|y1-y2|.
现有以下命题:
①若A,B是x轴上两点,则d(A,B)=|x1-x2|;
②已知点A(1,2),点B在线段x+y=1(x∈[0,1])上,则d(A,B)为定值;
③已知点A(2,1),点B在椭圆$\frac{{x}^{2}}{3}$+y2=1上,则d(A,B)的取值范围是(1,5);
④若|AB|表示A,B两点间的距离,那么|AB|≥$\frac{\sqrt{2}}{2}$d(A,B).
其中真命题的是①②③④(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在四棱锥S-ABCD中,找出并表示所有的异面直线和二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合$A=\{x|{(x-1)^2}≤\frac{3}{2}x-\frac{1}{2},x∈R\}$,B=N,则集合A∩B的真子集个数为(  )
A.3B.4C.7D.8

查看答案和解析>>

同步练习册答案