精英家教网 > 高中数学 > 题目详情
9.如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是±2,若在(0,1)上只有一个零点,则a的取值范围是(2,+∞).

分析 若函数f(x)=x2-ax+1仅有一个零点,则△=a2-4=0,解得实数a的值;
若在(0,1)上只有一个零点,则函数有两个零点,且有一个在(0,1)上,故f(0)f(1)<0,解得a的取值范围.

解答 解:若函数f(x)=x2-ax+1仅有一个零点,
则△=a2-4=0,
解得:a=±2,
此时函数的零点为1,或-1,均不在(0,1),
若在(0,1)上只有一个零点,
则函数有两个零点,且有一个在(0,1)上,
故f(0)f(1)=(2-a)<0,
解得:a∈(2,+∞)
故答案为:±2,(2,+∞)

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{-x+3a,x≤1}\end{array}\right.$在R上是单调函数,则实数a的取值范围为(  )
A.(0,1)B.(0,$\frac{1}{2}$]C.[$\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=loga(6-ax)(a>0且a≠1)在[0,2]上为减函数,则实数a的取值范围是(  )
A.(1,3)B.(0,1)C.(1,3]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={y|y=x2+1,x∈R},B={y|y=x+1,x∈R},则A∩B=(  )
A.{1,2}B.{y|y=1或2}
C.$\{(x,y)|\left\{{\begin{array}{l}{x=0}\\{y=1}\end{array}}\right.$或$\left\{{\begin{array}{l}{x=1}\\{y=2}\end{array}}\right.$}D.{y|y≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=${(\frac{1}{2})^{{x^2}-6x+17}}$
(1)求函数的定义域及值域;
(2)确定函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=x3[ln(ex+1)+ax]是奇函数,那么a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x)=ax2+2x+c的对称轴为x=1,g(x)=x+$\frac{1}{x}$(x>0).
(1)求函数g(x)的最小值及取得最小值时x的值;
(2)试确定c的取值范围,使g(x)-f(x)=0至少有一个实根;
(3)若F(x)=-f(x)+4x+c,存在实数t,对任意x∈[1,m],使F(x+t)≤3x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将函数f(x)=$6sin({2x-\frac{π}{3}})$的图象向右平移$\frac{π}{12}$个单位后得到g(x)的图象,则$g({\frac{π}{12}})$=$-3\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{3x-1,0≤x<1}\\{{2}^{x}-1,x≥1}\end{array}\right.$,设b>a≥0,若f(a)=f(b),则a•f(b)的取值范围是(  )
A.[$\frac{2}{3}$,2)B.[-$\frac{1}{12}$,+∞)C.[-$\frac{1}{12}$,-$\frac{1}{3}$)D.[-$\frac{1}{3}$,$\frac{2}{3}$]

查看答案和解析>>

同步练习册答案