| A. | [$\frac{2}{3}$,2) | B. | [-$\frac{1}{12}$,+∞) | C. | [-$\frac{1}{12}$,-$\frac{1}{3}$) | D. | [-$\frac{1}{3}$,$\frac{2}{3}$] |
分析 :由函数f(x)=$\left\{\begin{array}{l}{3x-1,0≤x<1}\\{{2}^{x}-1,x≥1}\end{array}\right.$,作出其图象如,利用数形结合思想能求出a•f(b)的取值范围.
解答 解:由函数f(x)=$\left\{\begin{array}{l}{3x-1,0≤x<1}\\{{2}^{x}-1,x≥1}\end{array}\right.$,作出其图象如图,![]()
因为函数f(x)在[0,1)和[1,+∞)上都是单调函数,
所以,若满足a>b≥0,时f(a)=f(b),
必有b∈[0,1),a∈[1,+∞),
由图可知,使f(a)=f(b)的b∈[$\frac{2}{3}$,1),
f(a)∈[1,2).
由不等式的可乘积性得:b•f(a)∈[$\frac{2}{3}$,2).
∴a•f(b)的取值范围是[$\frac{2}{3}$,2).
故选:A.
点评 本题考查数和函数值乘积的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com