精英家教网 > 高中数学 > 题目详情
18.函数f(x)=lg(3+2x-x2)的定义域为集合A,集合B={x|m-1<x<2m+1}.
(1)求集合A;
(2)若B⊆A,求实数m的取值范围.

分析 (1)由3+2x-x2>0,解得-1<x<3,可得集合A;
(2)若B⊆A,分类讨论求实数m的取值范围.

解答 解:(1)由3+2x-x2>0,解得-1<x<3,∴A=(-1,3);
(2)∵B⊆A,B={x|m-1<x<2m+1}.
∴B=∅,m-1≥2m+1,即m≤-2;
B≠∅,$\left\{\begin{array}{l}{m-1<2m+1}\\{m-1≥-1}\\{2m+1≤3}\end{array}\right.$,∴0≤m≤1,
综上所述,0≤m≤1或m≤-2.

点评 本题以集合为载体,考查函数的定义域,不等式的解法,考查集合之间的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.将函数f(x)=$6sin({2x-\frac{π}{3}})$的图象向右平移$\frac{π}{12}$个单位后得到g(x)的图象,则$g({\frac{π}{12}})$=$-3\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{3x-1,0≤x<1}\\{{2}^{x}-1,x≥1}\end{array}\right.$,设b>a≥0,若f(a)=f(b),则a•f(b)的取值范围是(  )
A.[$\frac{2}{3}$,2)B.[-$\frac{1}{12}$,+∞)C.[-$\frac{1}{12}$,-$\frac{1}{3}$)D.[-$\frac{1}{3}$,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称.若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,求x2+y2的取值范围是(  )
A.(3,7)B.(9,25)C.(13,49)D.(9,49)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=Asin(ωx+φ)(A>0,ω>0)|φ|<$\frac{π}{2}$的图象如图所示,
(1)试确定该函数的解析式;
(2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x^2}+{y^2}-2x-2y+1≤0\\|{x-1}|-y≤0\end{array}\right.$,则z=x+2y的最大值为3+$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x∈[0,1],则函数y=$\frac{x}{x+1}$的值域是[0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}中,a5=15,则a3+a4+a5+a8的值为(  )
A.30B.45C.60D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C与椭圆$\frac{x^2}{3}$+y2=1有相同的焦点,且过点($\sqrt{2}$,1),
(1)求椭圆C的方程;
(2)设椭圆C的右顶点为A,若直线y=k(x-1)与椭圆相交于不同的两点M、N,当△AMN的面积为$\frac{{\sqrt{10}}}{3}$时,求k的值.

查看答案和解析>>

同步练习册答案