分析 (1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:(1)根据函数y=Asin(ωx+φ)(A>0,ω>0)|φ|<$\frac{π}{2}$的图象,可得A=3,
$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=$\frac{π}{3}$+$\frac{π}{6}$,∴ω=2,再根据五点法作图可得2•(-$\frac{π}{6}$)+φ=0,求得φ=$\frac{π}{3}$,
∴函数y=3sin(2x+$\frac{π}{3}$).
(2)把y=sinx(x∈R)的图象向左平移$\frac{π}{3}$个单位,可得y=sin(x+$\frac{π}{3}$)的图象;
再把所得图象的横坐标变为原来的$\frac{1}{2}$倍,可得y=sin(2x+$\frac{π}{3}$)的图象,
再把所得图象上的点的纵坐标变为原来的3倍,可得函数y=3sin(2x+$\frac{π}{3}$)的图象.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,$\frac{8}{3}$) | B. | ($\frac{2}{3}$,2) | C. | (2,$\frac{10}{3}$) | D. | ($\frac{4}{3}$,$\frac{8}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com