精英家教网 > 高中数学 > 题目详情
7.双曲线$\frac{x^2}{4}$-$\frac{y^2}{5}$=1的焦点坐标是(-3,0),(3,0).

分析 求得双曲线的a,b,由c=$\sqrt{{a}^{2}+{b}^{2}}$,求得c=2,即可得到所求焦点坐标.

解答 解:双曲线$\frac{x^2}{4}$-$\frac{y^2}{5}$=1的a2=4,b2=5,
c=$\sqrt{{a}^{2}+{b}^{2}}$=3,
可得双曲线的焦点坐标为(-3,0),(3,0).
故答案为:(-3,0),(3,0).

点评 本题考查双曲线的焦点坐标,注意运用双曲线的基本量的关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知集合A={y|y=x2+1,x∈R},B={y|y=x+1,x∈R},则A∩B=(  )
A.{1,2}B.{y|y=1或2}
C.$\{(x,y)|\left\{{\begin{array}{l}{x=0}\\{y=1}\end{array}}\right.$或$\left\{{\begin{array}{l}{x=1}\\{y=2}\end{array}}\right.$}D.{y|y≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将函数f(x)=$6sin({2x-\frac{π}{3}})$的图象向右平移$\frac{π}{12}$个单位后得到g(x)的图象,则$g({\frac{π}{12}})$=$-3\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=loga(x-3)+1( a>0,a≠1)的图象恒过定点坐标(4,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=${({\frac{1}{2}})^{|x|}}$
(1)作出函数f(x)的图象;
(2)直接写出函数f(x)的值域;
(3)求 f[f(-1)]的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.圆x2+y2-4x+6y-12=0上的点到直线3x+4y+k=0的距离的最小值大于2,则实数k的取值范围是k<-29或k>41.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{3x-1,0≤x<1}\\{{2}^{x}-1,x≥1}\end{array}\right.$,设b>a≥0,若f(a)=f(b),则a•f(b)的取值范围是(  )
A.[$\frac{2}{3}$,2)B.[-$\frac{1}{12}$,+∞)C.[-$\frac{1}{12}$,-$\frac{1}{3}$)D.[-$\frac{1}{3}$,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称.若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,求x2+y2的取值范围是(  )
A.(3,7)B.(9,25)C.(13,49)D.(9,49)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}中,a5=15,则a3+a4+a5+a8的值为(  )
A.30B.45C.60D.120

查看答案和解析>>

同步练习册答案