精英家教网 > 高中数学 > 题目详情
15.已知复数z(1+4i)=2i-5(i为虚数单位),则复数z的虚部为(  )
A.-$\frac{22}{17}$B.$\frac{22}{17}$iC.$\frac{22}{17}$D.$\frac{3}{17}$

分析 把已知等式变形,利用复数代数形式的乘除运算化简得答案.

解答 解:∵z(1+4i)=2i-5,
∴$z=\frac{2i-5}{1+4i}=\frac{(2i-5)(1-4i)}{(1+4i)(1-4i)}=\frac{22i+3}{17}=\frac{3}{17}+\frac{22}{17}i$,
∴复数z的虚部为$\frac{22}{17}$.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.某班级有50名同学,一次数学测试平均成绩是92,其中学号为前30名的同学平均成绩为90,则后20名同学的平均成绩为95.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个总体分为A,B两层,其个体数之比为5:1,用分层抽样方法从总体中抽取一个容量为12的样本,已知B层中甲、乙都被抽到的概率为$\frac{1}{28}$,则总体中的个数为48.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数f(x)=ex+mx2-m(m>0),当x1+x2=1时,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,则实数x1的取值范围是(  )
A.(-∞,0)B.$(0,\frac{1}{2})$C.$(\frac{1}{2},1)$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sin2x+sinxcosx,当x=θ时函数y=f(x)取得最小值,则$\frac{sin2θ+2cosθ}{sin2θ-2cos2θ}$=(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,点F2关于双曲线C的一条渐近线的对称点A在该双曲线的左支上,则此双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=mlnx+$\frac{1}{x}$+2x,x∈[2,e].
(Ⅰ)若m=-1,求函数f(x)的单调区间;
(Ⅱ)若对任意的m∈[0,1],关于x的不等式f(x)≤(n+2)x恒成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=$(\frac{1}{2},\;\frac{{\sqrt{3}}}{2})$,$\overrightarrow{b}$=$(-\frac{{\sqrt{3}}}{2},\;\frac{1}{2})$,则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为(  )
A.60B.72C.84D.96

查看答案和解析>>

同步练习册答案