精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{{-(x+1)}^{2}+4p,x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$且f[f($\sqrt{2}$)]=$\frac{7}{4}$
(Ⅰ)求实数p的值;
(Ⅱ)若方程f(x)-m=0有3个不同的解,求实数m的取值范围;
(Ⅲ)若x∈[-1,16]时,f(x)≤n+1恒成立,求实数n的取值范围.

分析 (Ⅰ)运用分段函数的解析式,可得f($\frac{1}{2}$)=$\frac{7}{4}$,解方程可得p=1;
(Ⅱ)求出f(x)的解析式,画出图象,f(x)-m=0有3个不同的解,即为y=f(x)与y=m有3个交点,由图象观察,即可得到所求m的范围;
(Ⅲ)由(Ⅱ)知,当x∈[-1,16]时,f(x)∈[0,4].由题意可得n+1≥f(x)max=4,即可得到所求范围.

解答 解:(Ⅰ)∵f[f($\sqrt{2}$)]=$\frac{7}{4}$,即f($\frac{1}{2}$)=$\frac{7}{4}$,
∴-($\frac{1}{2}$+1)2+4p=$\frac{7}{4}$,∴p=1;
(Ⅱ)由(Ⅰ)知,f(x)=$\left\{\begin{array}{l}{-(x+1)^{2}+4,x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$,
其大致图象如右:
f(x)-m=0有3个不同的解,即为y=f(x)与y=m有3个交点,
∴实数m的取值范围为0<m<4;
(Ⅲ)由(Ⅱ)知,当x∈[-1,16]时,f(x)∈[0,4].
∵x∈[-1,16]时,f(x)≤n+1恒成立.
∴n+1≥f(x)max=4,即有n≥3.
即实数n的取值范围为[3,+∞).

点评 本题考查分段函数的图象和运用,考查不等式恒成立问题的解法,以及函数方程的转化思想的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右顶点分别是A1、A2,线段A1A2被抛物线y2=bx的焦点分为3:1两段,则此双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{3}+1$D.$\sqrt{5}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线C的极坐标方程为2ρsinθ+ρcosθ=10,曲线${C_1}:\left\{\begin{array}{l}x=3cosα\\ y=2sinα\end{array}\right.$(α为参数).
(1)求曲线C1的普通方程;
(2)若点M在曲线C1上运动,求M到曲线C的距离的最小值,并求出M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知全集U={x∈N|x<6},集合A={1,3},B={3,5},则∁U(A∪B)=(  )
A.{0,2,4}B.{2,4}C.{0,3,4}D.{3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,且f(0)=f($\frac{π}{3}$),则(  )
A.f(x)的最小正周期为2πB.f(x)的图象关于直线x=$\frac{5π}{6}$对称
C.f($\frac{2π}{3}$)=-2D.f(x)在[0,$\frac{π}{4}$]上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若幂函数y=xa的图象过点(2,$\frac{1}{2}$),则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示的四面体OABC中,OA=OB=OC=a,∠AOB=90°,∠BOC=∠AOC=60°,点M,N分别是AB,OC的中点,点S是MN上靠近点N的三等分点.
(1)试用$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$表示$\overrightarrow{OS}$;
(2)求异面直线CM和BN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=2${\;}^{{x}^{2}-1}$的单调递增区间为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设点A,B的坐标分别是(-5,0),(5,0),直线AM,BM相交于点M,且它们的斜率之积是-$\frac{4}{9}$,点M的轨迹方程为(  )
A.$\frac{{x}^{2}}{25}$+$\frac{9{y}^{2}}{100}$=1(x≠±5)B.$\frac{{x}^{2}}{25}$-$\frac{9{y}^{2}}{100}$=1(x≠±5)
C.$\frac{{y}^{2}}{25}$+$\frac{9{x}^{2}}{100}$=1(y≠±5)D.$\frac{{y}^{2}}{25}$-$\frac{9{x}^{2}}{100}$(y≠±5)

查看答案和解析>>

同步练习册答案