精英家教网 > 高中数学 > 题目详情
(1)已知cos(α+β)=
4
5
,cosβ=
5
13
,α,β均为锐角,求sinα的值;
(2)在锐角三角形ABC中,cosA=
4
5
,tan(A-B)=-
1
3
,求cosC的值.
考点:两角和与差的正切函数,两角和与差的正弦函数
专题:综合题,三角函数的求值
分析:(1)利用sinα=sin[(α+β)-β]=sin(α+β)cosβ-cos(α+β)sinβ,即可求sinα的值;
(2)利用cosC=cos[π-(A+B)]=-cos(A+B)=-cosBcosA+sinAsinB,可求cosC的值.
解答: 解:(1)∵α,β均为锐角
∴0°<α+β<180°
∴sin(α+β)>0,sinβ>0
cos(α+β)=
4
5

sin(α+β)=
3
5
…(2分)
cosβ=
5
13
,∴sinβ=
12
13
…(4分)
∴sinα=sin[(α+β)-β]=sin(α+β)cosβ-cos(α+β)sinβ=
3
5
5
13
-
4
5
12
13
=
15-48
65
=-
33
65
…(7分)
(2)在锐角三角形ABC中cosA=
4
5

sinA=
3
5
,∴tanA=
3
4
…(8分)
tan(A-B)=-
1
3

tanA-tanB
1+tanAtanB
=-
1
3

tanB=
13
9
…(10分)
0<B<
π
2

sinB=
13
10
50
     cosB=
9
10
50
…(12分)
∴cosC=cos[π-(A+B)]=-cos(A+B)=-cosBcosA+sinAsinB=-
9
10
50
4
5
+
3
5
13
10
50
=
3
10
250
…(14分)
点评:本题考查两角和与差的正弦、余弦函数,考查学生的计算能力,正确运用公式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x,y∈R,向量
a
=(x,1)
b
=(1,y),
c
=(2,-4)且
a
c
b
c
,则x+y=(  )
A、0B、1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=cos(2x+
π
3
)+sin2x.
(Ⅰ)求函数f(x)的最大值和最小正周期;
(Ⅱ)设A,B,C为△ABC的三个内角,若cosB=
1
3
,f(
c
2
)=-
1
4
,且C为锐角,求sinA.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1+
1
tanx
,msin(x+
π
4
)),
b
=(sin2x,sin(x-
π
4
)),记函数f(x)=
a
b
,求:
(1)当m=0时,求f(x)在区间[
π
8
4
]上的值域;
(2)当tanα=2时,f(α)=
3
5
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sin2x+2,cosx),
n
=(1,2cosx),设函数f(x)=
m
n

(1)求f(x)的最小正周期与单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C所对应的边,若f(A)=4,b=1,得面积为
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
e1
=(1,2),
e2
=(-3,2),向量
x
=k
e1
+
e2
y
=
e1
-3
e2

(1)当k为何值时,向量
x
y

(2)若向量
x
y
的夹角为钝角,求实数k的取值范围的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

若非零向量
a
b
满足|
a
|=3|
b
|=|
a
+2
b
|,求
a
b
夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
x2
2
-kx(k为常数)
(1)试讨论f(x)的单调性;
(2)若f(x)存在极值,求f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A为圆(x+1)2+y2=8的圆心,P是圆上的动点,点M在圆的半径AP上,且有点B(1,0)和BP上的点N,满足
MN
BP
=0,
BP
=2
BN

(Ⅰ)当点P在圆上运动时,求点M的轨迹方程;
(Ⅱ)若直线y=kx+
k2+1
(k>0)与(Ⅰ)中所求的点M的轨迹交于不同的两点F和H,O为坐标原点,且
2
3
OF
OH
3
4
,求k的取值范围.

查看答案和解析>>

同步练习册答案