精英家教网 > 高中数学 > 题目详情
精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0.|φ|<
π2
)在一个周期内的部分函数图象如图所示.
(Ⅰ)求函数f(x)的解析式.
(Ⅱ)求函数f(x)的单调递增区间.
(Ⅲ)求函数f(x)在区间[0,1]上的最大值和最小值.
分析:(I)由已知中函数f(x)=Asin(ωx+φ)(A>0,ω>0.|φ|<
π
2
)在一个周期内的部分函数图象,我们易求出函数的最大值,最小值,周期等信息,结合A,ω,φ与函数最值、周期之间的关系,易求出函数的解析式.
(II)根据(I)中所求的函数的解析式,结合正弦型函数单调性的确定方法,即可求出函数f(x)=Asin(ωx+φ)(A>0,ω>0.|φ|<
π
2
)的单调递增区间.
(Ⅲ)根据(II)的结论,我们易分析出函数在区间[0,1]上的单调性,进而得到函数f(x)在区间[0,1]上的最大值和最小值.
解答:精英家教网解:(Ⅰ)由图可得当X=
1
3
时,函数有最大值2;当X=
4
3
时,函数有最小值-2;
∴A=2,
T=2=
ω
,即ω=π
∴f(x)=2sin(πx+φ)
又∵函数图象过(
1
3
,2)点,|φ|<
π
2

∴2=2sin(
1
3
π+φ),
解得φ=
π
6

∴f(x)=2sin(πx+
π
6

(II)令2kπ-
π
2
≤πx+
π
6
≤2kπ+
π
2
,k∈Z
则2k-
2
3
≤x≤2k+
1
3
,k∈Z
∴函数f(x)=2sin(πx+
π
6
)的单调递增区间为[2k-
2
3
,2k+
1
3
],(k∈Z)
(III)由(II)的结论我们可得,
函数f(x)=2sin(πx+
π
6
)在区间[0,
1
3
]上单调递增,在区间[
1
3
,1]上单调递减,
∴当X=
1
3
时,函数f(x)=2sin(πx+
π
6
)取最大值2,当X=1时,函数f(x)=2sin(πx+
π
6
)取最小值-1.
点评:本题考查的知识点是由函数f(x)=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性,三角函数的最值,其中根据函数的部分图象确定函数的解析式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案