精英家教网 > 高中数学 > 题目详情
6.已知3a=2,3b=$\frac{1}{5}$,则32a-b=20.

分析 对3a=2,3b=$\frac{1}{5}$两边取对数,求出a,b的值,再计算2a-b的值,再根据指数和对数的运算性质即可求出答案.

解答 解:∵3a=2,3b=$\frac{1}{5}$,
两边取对数得a=log32,b=log3$\frac{1}{5}$=-log35,
∴2a-b=2log32+log35=log320,
∴32a-b=20,
故答案为:20.

点评 本题考查了对数函数和指数函数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足:an=an-1+1(n≥2,n∈N),且a3是a1与a5+2的等比中项.
(1)求数列{an}的通项公式an以及前n项和Sn
(2)若${b_n}={2^{a_n}}$(n∈N*),求数列{bn}的前n项和 Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆C:$\frac{x^2}{16}+\frac{y^2}{9}$=1的左、右顶点分别为A1,A2,点P是C上异于顶点的任一点,则直线PA2与直线PA1的斜率之积是(  )
A.-$\frac{3}{4}$B.-$\frac{9}{16}$C.-$\frac{4}{3}$D.-$\frac{16}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求适合下列条件的椭圆的标准方程:
(1)椭圆上一点P(3,2)到两焦点的距离之和为8;
(2)椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9或15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=$\frac{3{x}^{2}}{\sqrt{1-2x}}$+(2x+1)2的定义域为(  )
A.{x|x<$\frac{1}{2}$}B.{x|x<$\frac{1}{2}$且x≠-$\frac{1}{2}$}C.{x|x>$\frac{1}{2}$}D.{x|x≤$\frac{1}{2}$且x≠-$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{a-{2}^{x}}{1+{2}^{x}}$(a∈R),且x∈R时,总有f(-x)=-f(x)成立.
(1)求a的值;
(2)判断并证明函数f(x)的单调性;
(3)求f(x)在[0,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设奇函数f(x)与g(x)偶函数的定义域都为(-∞,+∞),且满足f(x)+g(x)=2x,有下列命题:
①g(x)≥1在(-∞,+∞)恒成立;
②f(x)2-g(x)2=-1在(-∞,+∞)恒成立;
③f(x)≤g(x)在(-∞,+∞)恒成立;
④g(2x)=2f(x)g(x)在(-∞,+∞)恒成立.
则真命题是①②③(填所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\frac{x}{{e}^{x}}$(x∈R),若x1≠x2,且f(x1)=f(x2),则x1,2-x2大小关系是(  )
A.x1>2-x2B.x1<2-x2
C.x1=2-x2D.x1与2-x2大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校1000名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这1000名学生数学成绩的平均分;
(3)若这1000名学生数学成绩某些分数段的人数(x)与语文成绩相应分数段的人数(y)之比如表所示,求语文成绩在[50,90)之外的人数.
分数段[50,60)[60,70)[70,80)[80,90)
x:y1:14:53:22:1

查看答案和解析>>

同步练习册答案