精英家教网 > 高中数学 > 题目详情
13.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>b>0)的一个顶点为A(0,-1),离心率e=$\frac{\sqrt{6}}{3}$.
(1)求椭圆E的标准方程;
(2)设运动直线l:y=kx+$\frac{3}{2}$(k≠0)与椭圆E相交于M、N两点,线段MN的中点为P,若AP⊥MN,求k的值.

分析 (1)由已知得b=1,e=$\frac{c}{a}=\frac{\sqrt{6}}{3}$,由此能求出椭圆E的方程.
(2)由$\left\{\begin{array}{l}{\frac{{x}^{2}}{3}+{y}^{2}=1}\\{y=kx+\frac{3}{2}}\end{array}\right.$,得$(1+3{k}^{2}){x}^{2}+9kx+\frac{15}{4}$=0,由此利用根的判别式、韦达定理、中点坐标公式、直线垂直的性质,结合已知条件能求出k.

解答 解:(1)∵椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>b>0)的一个顶点为A(0,-1),离心率e=$\frac{\sqrt{6}}{3}$,
∴b=1,e=$\frac{c}{a}=\frac{\sqrt{6}}{3}$,
∵a2=b2+c2,∴c2=2,a2=3,
∴椭圆E的椭圆方程为$\frac{{x}^{2}}{3}+{y}^{2}=1$.
(2)设M(x1,y1),N(x2,y2),则P($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{3}+{y}^{2}=1}\\{y=kx+\frac{3}{2}}\end{array}\right.$,得$(1+3{k}^{2}){x}^{2}+9kx+\frac{15}{4}$=0,
则△=81k2-15(1+3k2)=36k2-15>0,即${k}^{2}>\frac{15}{2}$,①
${x}_{1}+{x}_{2}=-\frac{9k}{1+3{k}^{2}}$,②
∵AP⊥MN,∴kMN•kAP=-1,
即k=$\frac{\frac{{y}_{1}+{y}_{2}}{2}+1}{\frac{{x}_{1}+{x}_{2}}{2}}$=-1,∴k(y1+y2+2)+(x1+x2)=0,
又∵${y}_{1}+{y}_{2}=k{x}_{1}+\frac{3}{2}+k{x}_{2}+\frac{3}{2}$=k(x1+x2)+3,
∴k[k(x1+x2)+5]+(x1+x2)=0,即(k2+1)(x1+x2)+5k=0,③
②代入③,得-(k2+1)•$\frac{9k}{1+3{k}^{2}}$+5k=0,整理,得${k}^{2}=\frac{2}{3}$>$\frac{5}{12}$,满足①,
解得k=±$\frac{\sqrt{6}}{3}$.

点评 本题主要考查直线与圆锥曲线等基础知识,考查运算求解能力、推理论证能力,考查数形结合、化归思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)={log_{\frac{1}{2}}}(3+x)+{log_{\frac{1}{2}}}(3-x)$.
(Ⅰ) 求f(1)的值;
(Ⅱ) 判断函数f(x)的奇偶性,并加以证明;
(Ⅲ)若f(2x)>0,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f(x)=xex的导函数为f′(x),则f′(1)的值为(  )
A.eB.e+1C.2eD.e+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设F1,F2分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F1且斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求E的离心率;
(2)设A,B两点都在以P(-2,0)为圆心的同一圆上,求E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{24}$+$\frac{{y}^{2}}{12}$=1内一点M(3,1),过M作一条直线l交椭圆于A,B两点.
(Ⅰ)若AB恰被M点平分,求直线l的方程;
(Ⅱ)若直线l的倾斜角为$\frac{π}{4}$,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x+$\frac{a}{x}$-2lnx,a∈R.
(1)若f(x)在定义域上为单调函数,求实数a的取值范围;
(2)若函数f(x)有两个极值点x1,x2,且x1<x2,证明:f(x2)<x2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图所示:一个边长为$\frac{{\sqrt{2}}}{2}$的正方形上连接着等腰直角三角形,等腰直角三角形的边上再连接正方形,…,如此继续.若共得到255个正方形,则最小正方形的边长为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线过点M(-3,0),且倾斜角为30°,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦点为F1(-2,0),离心率$e=\frac{{\sqrt{6}}}{3}$.
(Ⅰ)求直线l和椭圆C的方程;
(Ⅱ)求证:直线l和椭圆C有两个交点;
(Ⅲ)设直线l和椭圆C的两个交点为A,B,求证:以线段AB为直径的圆经过点F1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,等边三角形OAB的边长为8$\sqrt{3}$,且三个顶点均在抛物线E:y2=2px(p>0)上,O为坐标原点.
(Ⅰ)证明:A、B两点关于x轴对称;
(Ⅱ)求抛物线E的方程.

查看答案和解析>>

同步练习册答案