精英家教网 > 高中数学 > 题目详情
4.设f(x)=xex的导函数为f′(x),则f′(1)的值为(  )
A.eB.e+1C.2eD.e+2

分析 求出导函数,再x=1代入导函数计算.

解答 解:f′(x)=ex+xex
f′(1)=e+e=2e.
故选:C.

点评 本题考查了基本初等函数的导数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.点P是椭圆$\frac{x^2}{9}+\frac{y^2}{4}$=1上的一点,F1、F2分别是椭圆的左右焦点,若∠F1PF2=60°,则|PF1||PF2|=$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知 $\frac{1+tanα}{1-tanα}$=2016,则$\frac{1}{cos2α}$+tan2α=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x2345
y1.5233.5
(1)请根据上表提供的数据,用最小二乘法求出y关于x的回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{c}$;
(2)已知该厂技改前100吨甲产品的生产能耗为85吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式:$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,O为坐标原点,过点P(4,0)且斜率为k的直线l交抛物线y2=4x于M(x1,y1),N(x2,y2)两点.
(1)写出直线l的方程.
(2)求x1x2与y1y2的值.
(3)求证:OM⊥ON.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对称轴为坐标轴的椭圆与的焦点F1(-$\sqrt{3}$,0),F2( $\sqrt{3}$,0),P为椭圆上任意一点,满足|PF1|+|PF2|=4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设不过原点O的直线l:y=kx+$\frac{1}{2}$与椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,O到直线PQ的距离为$\frac{1}{\sqrt{5}}$,求S△OPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设椭圆M:$\frac{{x}^{2}}{2{c}^{2}}$+$\frac{{y}^{2}}{{c}^{2}}$=1,其中c>0.
(1)若椭圆M的焦点为F1、F2,且|F1F2|=2$\sqrt{6}$,P为M上一点,求|PF1|+|PF2|的值;
(2)如图所示,A是椭圆上一点,且A在第二象限,A与B关于原点对称,C在x轴上,且AC与x轴垂直,若$\overrightarrow{CA}$•$\overrightarrow{CB}$=-4,△ABC面积为4,直线BC与M交于另一点D,求线段BD的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>b>0)的一个顶点为A(0,-1),离心率e=$\frac{\sqrt{6}}{3}$.
(1)求椭圆E的标准方程;
(2)设运动直线l:y=kx+$\frac{3}{2}$(k≠0)与椭圆E相交于M、N两点,线段MN的中点为P,若AP⊥MN,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设椭圆M的方程为:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1.
(1)求M的长轴长与短轴长;
(2)若椭圆N的焦点为椭圆M在y轴上的顶点,且椭圆N经过点A(-$\sqrt{2}$,$\frac{3\sqrt{2}}{2}$),求椭圆N的方程.

查看答案和解析>>

同步练习册答案