12£®Ï±íÌṩÁËij³§½ÚÄܽµºÄ¼¼Êõ¸ÄÔìºóÉú²ú¼×²úÆ·¹ý³ÌÖмǼµÄ²úÁ¿x£¨¶Ö£©ÓëÏàÓ¦µÄÉú²úÄܺÄy£¨¶Ö±ê׼ú£©µÄ¼¸×é¶ÔÕÕÊý¾Ý£®
x2345
y1.5233.5
£¨1£©Çë¸ù¾ÝÉϱíÌṩµÄÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨Çó³öy¹ØÓÚxµÄ»Ø¹é·½³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{c}$£»
£¨2£©ÒÑÖª¸Ã³§¼¼¸Äǰ100¶Ö¼×²úÆ·µÄÉú²úÄܺÄΪ85¶Ö±ê׼ú£®ÊÔ¸ù¾Ý£¨2£©Çó³öµÄ»Ø¹é·½³Ì£¬Ô¤²âÉú²ú100¶Ö¼×²úÆ·µÄÉú²úÄܺıȼ¼¸Äǰ½µµÍ¶àÉÙ¶Ö±ê׼ú£¿
²Î¿¼¹«Ê½£º$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$£®

·ÖÎö ½â£¨1£©¸ù¾ÝÌâÄ¿ÖеĹ«Ê½£¬¼ÆËã$\overline{x}$¡¢$\overline{y}$£¬Çó³ö»Ø¹éÖ±ÏßµÄϵÊý$\stackrel{¡Ä}{b}$¡¢$\stackrel{¡Ä}{a}$£¬Ð´³ö»Ø¹é·½³Ì£»
£¨2£©¸ù¾Ý»Ø¹éÖ±Ïß·½³Ì£¬¼ÆËãx=100ʱ$\stackrel{¡Ä}{y}$µÄÖµ£¬µÃ³ö½µµÍ¶àÉÙ¶Ö±ê׼ú£®

½â´ð ½â£¨1£©¼ÆËã$\overline{x}$=$\frac{2+3+4+5}{4}$=3.5£¬$\overline{y}$=2.5£¬
$\sum_{i=1}^{4}$xiyi=2¡Á1.5+3¡Á2+4¡Á3+5¡Á3.5=38.5£®
$\sum_{i=1}^{4}$${{x}_{i}}^{2}$=22+32+42+52=54£¬
ËùÒԻع鷽³ÌµÄϵÊýΪ$\stackrel{¡Ä}{b}$=$\frac{{{\sum_{i=1}^{4}x}_{i}y}_{i}-4\overline{x}\overline{y}}{{{\sum_{i=1}^{4}x}_{i}}^{2}-{4\overline{x}}^{2}}$=$\frac{38.5-4¡Á3.5¡Á2.5}{54-4{¡Á3.5}^{2}}$=0.7£¬¡­£¨5·Ö£©
$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$=2.5-0.7¡Á3.5=0.05£®
ËùÒÔ£¬ËùÇóµÄ»Ø¹é·½³ÌΪ$\stackrel{¡Ä}{y}$=0.7x+0.05£®¡­£¨8·Ö£©
£¨2£©ÏÖÔÚÉú²ú100¶Ö¼×²úÆ·ÓÃú
$\stackrel{¡Ä}{y}$=0.7¡Á100+0.05=70.05£¬
ËùÒÔ£¬½µµÍ85-70.05=14.95£¨¶Ö±ê׼ú£©£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÇòÏßÐԻع鷽³ÌµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˼ÆËãÄÜÁ¦µÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬µãA£¬F·Ö±ðÊÇÍÖÔ²CµÄ×ó¶¥µãºÍ×󽹵㣬µãPÊÇ¡ÑO£ºx2+y2=b2Éϵ͝µã£¬Èô$\frac{|AP|}{|FP|}$Êdz£Êý£¬ÔòÍÖÔ²CµÄÀëÐÄÂÊΪ$\frac{\sqrt{5}-1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êý$f£¨x£©={log_{\frac{1}{2}}}£¨3+x£©+{log_{\frac{1}{2}}}£¨3-x£©$£®
£¨¢ñ£© Çóf£¨1£©µÄÖµ£»
£¨¢ò£© ÅжϺ¯Êýf£¨x£©µÄÆæÅ¼ÐÔ£¬²¢¼ÓÒÔÖ¤Ã÷£»
£¨¢ó£©Èôf£¨2x£©£¾0£¬ÇóʵÊýxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Ä³Ê³Æ·µÄ±£ÏÊʱ¼äy£¨µ¥Î»£ºÐ¡Ê±£©Óë´¢´æÎ¶Èx£¨µ¥Î»£º¡æ£©Âú×㺯Êý¹ØÏµy=ekx+b£¨e=2.718¡­Îª×ÔÈ»¶ÔÊýµÄµ×Êý£¬k£¬bΪ³£Êý£©£®Èô¸ÃʳƷÔÚ0¡æµÄ±£ÏÊʱ¼äΪ192Сʱ£¬ÔÚ22¡æµÄ±£ÏÊʱ¼äÊÇ48Сʱ£¬Çó¸ÃʳƷÔÚ33¡æµÄ±£ÏÊʱ¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¡°Öйúʽ¹ýÂí·¡±´æÔںܴóµÄ½»Í¨°²È«Òþ»¼£®Ä³µ÷²é»ú¹¹ÎªÁ˽â·È˶ԡ°Öйúʽ¹ýÂí·¡±µÄ̬¶ÈÊÇ·ñÓëÐÔ±ðÓйأ¬´ÓÂí·ÅÔËæ»ú³éÈ¡30Ãû·È˽øÐÐÁËÎʾíµ÷²é£¬µÃµ½ÁËÈçÏÂÁÐÁª±í£º
ÄÐÐÔÅ®ÐԺϼÆ
·´¸Ð10  
²»·´¸Ð 8 
ºÏ¼Æ  30
ÒÑÖªÔÚÕâ30ÈËÖÐËæ»ú³éÈ¡1È˳鵽·´¸Ð¡°Öйúʽ¹ýÂí·¡±µÄ·È˵ĸÅÂÊÊÇ$\frac{7}{15}$£®
£¨I£©Ç뽫ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£¨ÔÚ´ðÌ⿨ÉÏÖ±½ÓÌîд½á¹û£¬²»ÐèҪдÇó½â¹ý³Ì£©£¬²¢¾Ý´Ë×ÊÁÏ·ÖÎö·´¸Ð¡°Öйúʽ¹ýÂí·¡±ÓëÐÔ±ðÊÇ·ñÓйأ¿£¨²Î¿¼¹«Ê½£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨a+c£©£¨c+d£©£¨b+d£©}$£©
£¨¢ò£©Èô´ÓÕâ30ÈËÖеÄÅ®ÐÔ·ÈËÖÐËæ»ú³éÈ¡2È˲μÓÒ»»î¶¯£¬¼Ç·´¸Ð¡°Öйúʽ¹ýÂí·¡±µÄÈËÊýΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈçͼÊÇ2016ÄêÎÒУÔÚºì¸è±ÈÈüÉÏ£¬ÆßλÆÀίΪij°à´ò³öµÄ·ÖÊýµÄ¾¥Ò¶Í³¼ÆÍ¼£¬Õâ×éÊý¾ÝµÄÖÐλÊýÊÇ£¨¡¡¡¡£©
A£®85B£®84C£®82D£®81

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Éèf£¨x£©=xexµÄµ¼º¯ÊýΪf¡ä£¨x£©£¬Ôòf¡ä£¨1£©µÄֵΪ£¨¡¡¡¡£©
A£®eB£®e+1C£®2eD£®e+2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬¹ýF1ÇÒбÂÊΪ1µÄÖ±ÏßlÓëEÏཻÓÚA£¬BÁ½µã£¬ÇÒ|AF2|£¬|AB|£¬|BF2|³ÉµÈ²îÊýÁУ®
£¨1£©ÇóEµÄÀëÐÄÂÊ£»
£¨2£©ÉèA£¬BÁ½µã¶¼ÔÚÒÔP£¨-2£¬0£©ÎªÔ²ÐĵÄͬһԲÉÏ£¬ÇóEµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÖ±Ïß¹ýµãM£¨-3£¬0£©£¬ÇÒÇãб½ÇΪ30¡ã£¬ÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©µÄ×ó½¹µãΪF1£¨-2£¬0£©£¬ÀëÐÄÂÊ$e=\frac{{\sqrt{6}}}{3}$£®
£¨¢ñ£©ÇóÖ±ÏßlºÍÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÇóÖ¤£ºÖ±ÏßlºÍÍÖÔ²CÓÐÁ½¸ö½»µã£»
£¨¢ó£©ÉèÖ±ÏßlºÍÍÖÔ²CµÄÁ½¸ö½»µãΪA£¬B£¬ÇóÖ¤£ºÒÔÏß¶ÎABΪֱ¾¶µÄÔ²¾­¹ýµãF1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸