分析 方程$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{k-2}$=1表示焦点在x轴上的双曲线,可得$\left\{\begin{array}{l}{k>0}\\{k-2<0}\end{array}\right.$,即可求出实数k的取值范围.
解答 解:∵方程$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{k-2}$=1表示焦点在x轴上的双曲线,
∴$\left\{\begin{array}{l}{k>0}\\{k-2<0}\end{array}\right.$,
∴0<k<2.
故答案为:0<k<2.
点评 此题考查了双曲线焦点的归属问题.解决此类问题只需理解y2的系数为负,x2的系数为正则焦点就在x轴上,反之就在y轴上就可以了.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-\frac{π}{12},0})$ | B. | $({\frac{5π}{12},0})$ | C. | $({-\frac{π}{3},0})$ | D. | $({\frac{2π}{3},0})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com