精英家教网 > 高中数学 > 题目详情
7.已知双曲线的离心率为2,左右焦点分别为F1,F2,点A在双曲线上,若|F1A|=2|F2A|,∠AF2F1的正切值为$\sqrt{15}$.

分析 由离心率公式,可得c=2a,根据双曲线的定义,以及余弦定理建立a,c的关系即可得到结论.

解答 解:∵双曲线C的离心率为2,
∴e=$\frac{c}{a}$=2,即c=2a,
由于点A在双曲线的右支上,则|F1A|-|F2A|=2a,
又|F1A|=2|F2A|,
∴解得|F1A|=4a,|F2A|=2a,|F1F2|=2c,
则由余弦定理得cos∠AF2F1=$\frac{4{a}^{2}+4{c}^{2}-16{a}^{2}}{2×2a×2c}$=$\frac{1}{4}$,
∴tan∠AF2F1=$\sqrt{15}$.
故答案为:$\sqrt{15}$.

点评 本题主要考查双曲线的定义和性质,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.k>9是方程$\frac{x^2}{9-k}+\frac{y^2}{k-4}=1$表示双曲线的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过P(-4,1)的直线l与双曲线$\frac{x^2}{4}-{y^2}=1$仅有一个公共点,则这样的直线l的有2条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设0≤x≤1,证明:a2x+b2(1-x)≥[ax+b(1-x)]2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,命题q:函数y=loga(1-2x)在定义域上单调递增,若“p∨q”为真命题且“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.方程$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{k-2}$=1表示焦点在x轴上的双曲线,则k的取值范围是0<k<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,直线l:3x-y-6=0被圆C:x2+y2-2x-4y=0截得的弦长为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.△ABC中,D、E三等分BC,F为AC的中点,BF分别与AD、AE交于M、N.试求△AMN与△ABC面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a>0,命题p:?x>0,x+$\frac{a}{x}$≥2恒成立,命题q:?k∈R,直线kx-y+2=0与椭圆x2+$\frac{{y}^{2}}{{a}^{2}}$=1有公共点,求使得p∨q为假命题的实数a的取值范围.

查看答案和解析>>

同步练习册答案