精英家教网 > 高中数学 > 题目详情
9.函数f(x)=-x3+3x2-ax-2a,若存在唯一的正整数x0,使得f(x0)>0,则a的取值范围是$[\frac{2}{3},1)$.

分析 由题意设g(x)=-x3+3x2、h(x)=a(x+2),求出g′(x)并化简,由导数与函数单调性的关系,判断出g(x)的单调性、并求出特殊函数值,在同一个坐标系中画出它们的图象,结合条件由图象列出满足条件的不等式组,即可求出a的取值范围.

解答 解:由题意设g(x)=-x3+3x2,h(x)=a(x+2),
则g′(x)=-3x2+6x=-3x(x-2),
所以g(x)在(-∞,0)、(2,+∞)上递减,在(0,2)上递增,
且g(0)=g(3)=0,g(2)=-23+3•22=4,
在一个坐标系中画出两个函数图象如图:
因为存在唯一的正整数x0,使得f(x0)>0,
即g(x0)>h(x0),
所以由图得x0=2,则$\left\{\begin{array}{l}{a>0}\\{g(2)>h(2)}\\{g(1)≤h(1)}\end{array}\right.$,即$\left\{\begin{array}{l}{a>0}\\{4>4a}\\{-1+3≤3a}\end{array}\right.$,
解得23≤a<1,
所以a的取值范围是$[\frac{2}{3},1)$,
故答案为:$[\frac{2}{3},1)$.

点评 本题考查了函数图象以及不等式整数解问题,导数与函数单调性的关系,解题的关键是将问题转化为两个函数图象交点问题,考查转化思想、数形结合思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}-1,x≥0}\\{-2x,x<0}\end{array}}$,则关于x的方程f[f(x)]+k=0给出下列四个命题:
①存在实数k,使得方程恰有1个实根;  
②存在实数k,使得方程恰有2个不相等的实根;
③存在实数k,使得方程恰有3个不相等的实根;
④存在实数k,使得方程恰有4个不相等的实根.
其中正确命题的序号是①②③(把所有满足要求的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}为等比数列,若a2•a3=2a1,且a4与2a7的等差中项为$\frac{5}{4}$,则a1=(  )
A.8B.16C.32D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知P(x0,y0)是抛物线y2=2px(p>0)上的一点,过P点的切线方程的斜率可通过如下方式求得,在y2=2px两边同时对x求导,得2yy'=2p,则$y'=\frac{p}{y}$,所以过点P的切线的斜率$k=\frac{p}{y_0}$,试用上述方法求出双曲线${x^2}-\frac{y^2}{2}=1$在$P({\sqrt{2},\sqrt{2}})$处的切线方程为(  )
A.2x-y=0B.$2x-y-\sqrt{2}=0$C.$2x-3y-\sqrt{2}=0$D.$x-y-\sqrt{2}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图在复平面上,一个正方形的三个顶点对应的复数分别是1+2i,-2+i,0,那么这个正方形的第四个顶点对应的复数为(  )
A.3+iB.-1+3iC.1-3iD.3-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一几何体的三视图如图所示,则它的体积为(  )
A.$\frac{{5\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,其正视图,侧视图,俯视图均为全等的正方形,则该几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\sqrt{6}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算下列定积分.
(1)$\int_0^1{(2x+3)dx}$;
(2)$\int_e^{e^3}{\frac{1}{x}}dx$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x-$\frac{a}{x}$-(a+1)lnx(a∈R).
(Ⅰ)当a=$\frac{1}{2}$时,求函数f(x)的单调区间;
(Ⅱ)是否存在实数a,使f(x)≤x恒成立,若存在,求出实数a的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案