精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x-$\frac{a}{x}$-(a+1)lnx(a∈R).
(Ⅰ)当a=$\frac{1}{2}$时,求函数f(x)的单调区间;
(Ⅱ)是否存在实数a,使f(x)≤x恒成立,若存在,求出实数a的取值范围;若不存在,说明理由.

分析 (Ⅰ)确定函数f(x)的定义域,求导函数,分类讨论,利用导数的正负确定取得函数的单调区间;
(Ⅱ)f(x)≤x恒成立可转化为a+(a+1)xlnx≥0恒成立,构造函数φ(x)=a+(a+1)xlnx,则只需φ(x)≥0在x∈(0,+∞)恒成立即可,求导函数,分类讨论,即可求出实数a的取值范围.

解答 解:(Ⅰ)函数f(x)的定义域为(0,+∞),
f′(x)=$\frac{(x-a)(x-1)}{{x}^{2}}$,
当a=$\frac{1}{2}$时,由f′(x)>0得,0<x<$\frac{1}{2}$或x>1,由f′(x)<0,得$\frac{1}{2}$<x<1,
故函数f(x)的单调增区间为(0,$\frac{1}{2}$),(1,+∞),单调减区($\frac{1}{2}$,1).
(Ⅱ)f(x)≤x恒成立可转化为a+(a+1)xlnx≥0恒成立,
令φ(x)=a+(a+1)xlnx,则只需φ(x)≥0在x∈(0,+∞)恒成立即可,
求导函数可得:φ′(x)=(a+1)(1+lnx)
当a+1>0时,在x∈(0,$\frac{1}{e}$)时,φ′(x)<0,在x∈($\frac{1}{e}$,+∞)时,φ′(x)>0
∴φ(x)的最小值为φ($\frac{1}{e}$),由φ($\frac{1}{e}$)≥0得a≥$\frac{1}{e-1}$,
故当a≥$\frac{1}{e-1}$时f(x)≤x恒成立,
当a+1=0时,φ(x)=-1,φ(x)≥0在x∈(0,+∞)不能恒成立,
当a+1<0时,取x=1,有φ(1)=a<-1,φ(x)≥0在x∈(0,+∞)不能恒成立,
综上所述当a≥$\frac{1}{e-1}$时,使f(x)≤x恒成立.

点评 本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,考查恒成立问题,同时考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.函数f(x)=-x3+3x2-ax-2a,若存在唯一的正整数x0,使得f(x0)>0,则a的取值范围是$[\frac{2}{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设α∈(0,π),若cos(π-α)=$\frac{1}{3}$,则tan(α+π)=-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量${\overrightarrow m_1}$=(0,x),${\overrightarrow n_1}$=(1,1),${\overrightarrow m_2}$=(x,0),${\overrightarrow n_2}$=(y2,1)(其中x,y是实数),又设向量$\overrightarrow m$=${\overrightarrow m_1}$+$\sqrt{2}$${\overrightarrow n_2}$,$\overrightarrow n$=${\overrightarrow m_2}$-$\sqrt{2}$${\overrightarrow n_1}$,且$\overrightarrow m$∥$\overrightarrow n$,点P(x,y)的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设直线l:y=kx+1与曲线C交于M、N两点,当|MN|=$\frac{{4\sqrt{2}}}{3}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD的底面ABCD是平行四边形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,设E为PC中点,点F在线段PD上,且PF=2FD.
(1)求证:BE∥平面ACF;
(2)设异面直线$\overrightarrow{BE}$与$\overrightarrow{CF}$的夹角为θ,若$cosθ=\frac{5}{11}$,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,F是线段BC的中点
(1)证明:PF⊥FD;
(2)若PB与平面ABCD所成的角为45o,求点A到平面PFD 距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=asin(πx+α)+bcos(πx-β),其中α,β,a,b均为非零实数,若f(2016)=-1,则f(2017)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设$\overrightarrow{a}$=(2cosx+2$\sqrt{3}$sinx,1),$\overrightarrow{b}$=(cosx,-y)满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,y=f(x)
(1)求函数f(x)的最值;
(2)已知△ABC的内角A,B,C的对边分别为a,b,c,若f(x)的最大值恰好是f($\frac{A}{2}$),当a=2时,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设命题p:函数f(x)=lg[(a2-1)x2+(a+1)x+1]的值域为R;命题q:函数y=$\frac{|{x}^{2}-1|}{x-1}$的图象与函数y=ax-2的图象恰有两个交点;如果命题“p∨q”为真命题,且“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案