精英家教网 > 高中数学 > 题目详情
5.椭圆x2+4y2=16的长轴长和短轴长依次为(  )
A.4,2B.8,4C.4,2$\sqrt{3}$D.8,4$\sqrt{3}$

分析 把椭圆方程化为椭圆的标准方程,求出a,b的值,则答案可求.

解答 解:由椭圆x2+4y2=16,得$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$,
∴a2=16,即a=4,b2=4,即b=2.
∴椭圆x2+4y2=16的长轴长和短轴长依次为:8,4.
故选:B.

点评 本题考查了椭圆的简单性质,考查了椭圆的标准方程,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,且点($\sqrt{3}$,$\frac{1}{2}$)在椭圆C上.
(1)求椭圆C的方程;
(2)设椭圆E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4{b}^{2}}$=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.
(i)求证$\frac{|OQ|}{|OP|}$=2;
(ii)求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列关系不正确的是(  )
A.I∈NB.$\sqrt{2}$∈QC.{1,2}⊆{1,2,3}D.∅⊆{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax-1-lnx(a∈R).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)在x=1处取得极值,不等式f(x)≥bx-2对任意x∈(0,+∞)恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若(1+x)4=a0+a1x+a2x2+a3x3+a4x4,则a1+a2+a3+a4的值为(  )
A.0B.15C.16D.17

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设数列{an}使得a1=0,且对任意的n∈N*,均有|an+1-an|=n,则a3所有可能的取值构成的集合为{-3,-1,1,3};a64的最大值为2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x+1)=$\frac{{{x^2}+2x}}{x+1}$(x≠-1).
(Ⅰ)求函数f(x)的解析式,并判断函数f(x)的奇偶性;
(Ⅱ)求证:f($\frac{1}{x}$)=f(-x);
(Ⅲ)求证:f(x)在(0,+∞)为单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}和{bn},满足ak+1=ak+bk,k∈N*,若存在正整数n,使得an=a1成立,则称数列{an}为“n阶还原数列”,给出下列条件:
(1)|bk|=1,(2)|bk|=k,(3)|bk|=2k
则可能使数列{an}为“8阶还原数列”的是(  )
A.(1)B.(1)(2)C.(2)(3)D.(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某商品进货单价为60元,若销售价为90元,可卖出40个,如果销售价每涨1元,销售量就减少1个,为了获得最大利润,求此商品的最佳售价应为多少?

查看答案和解析>>

同步练习册答案