精英家教网 > 高中数学 > 题目详情
13.如图,已知扇形AOB的圆心角为120°,半径长为6,求弓形ACB的面积.

分析 由已知利用弧长公式可求弧长,进而可求S扇形OAB,解三角形可求S△OAB,作差即可得解弓形ACB的面积.

解答 解:因为:120°=$\frac{120}{180}$π=$\frac{2}{3}$π,
所以:l=6×$\frac{2}{3}$π=4π,
所以:$\widehat{AB}$的长为4π.
因为:S扇形OAB=$\frac{1}{2}$lr=$\frac{1}{2}$×4π×6=12π,如图所示,
有S△OAB=$\frac{1}{2}$×AB×OD(D为AB中点)
=$\frac{1}{2}$×2×6cos$\frac{π}{6}$×3=9$\sqrt{3}$.
所以:S弓形ACB=S扇形OAB-S△OAB=12π-9$\sqrt{3}$.
所以:弓形ACB的面积为12π-9$\sqrt{3}$.

点评 本题主要考查了弧长公式,扇形面积公式,三角形面积公式的综合应用,考查了数形结合扇形,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}12x-x{\;}^{3},x≤0\\-2x,x>0\end{array}$,当x∈(-∞,m]时,f(x)的取值范围为[-16,+∞),则实数m的取值范围是[-2,8].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数f(x)=$\sqrt{3}$cos2x+sin2x的图象向右平移$\frac{π}{6}$个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,且满足|g(x)|≤a恒成立,则a的最小值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题“原函数与反函数的图象关于y=x对称”的否定是(  )
A.原函数与反函数的图象关于y=-x对称
B.原函数不与反函数的图象关于y=x对称
C.存在一个原函数与反函数的图象不关于y=x对称
D.存在原函数与反函数的图象关于y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设直线系A:(x-1)cos θ+(y-1)sin θ=1(0≤θ<2π),对于下列五个命题:
①存在定点P不在A中的任一直线上;
②A中所有直线均经过一个定点;
③对于任意的正整数n(n≥3),存在正n边形,其所有边均在A中的直线上;
④A中的直线所能围成的正三角形的面积都相等;
⑤A中的直线所能围成的正方形的面积都相等.
其中所有真命题的序号是(  )
A.①②④B.②③⑤C.①③⑤D.②④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}的前n项和为Sn,a2=6,S5=40.求数列{an}的通项公式和前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow a,\overrightarrow b$的夹角为$\frac{5π}{6}$,且$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\sqrt{3}$,$\overrightarrow c=2\overrightarrow a+3\overrightarrow b$,则$|{\overrightarrow c}|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在${(\frac{a}{x}-\sqrt{x})^6}(a>0)$的展开式中,常数项为60.
(1)求a;
(2)求含${x^{\frac{3}{2}}}$的项的系数;
(3)求展开式中所有的有理项.
(4)求展开式中系数最大的项和二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若$tan(θ-\frac{π}{4})=\frac{1}{3}$,则tanθ=2.

查看答案和解析>>

同步练习册答案