精英家教网 > 高中数学 > 题目详情
2.已知在${(\frac{a}{x}-\sqrt{x})^6}(a>0)$的展开式中,常数项为60.
(1)求a;
(2)求含${x^{\frac{3}{2}}}$的项的系数;
(3)求展开式中所有的有理项.
(4)求展开式中系数最大的项和二项式系数最大的项.

分析 (1)利用二项式定理的通项公式,通过x的指数为0,求出常数项,然后解出a的值.
(2)利用二项式定理写出含${x^{\frac{3}{2}}}$的项求r的值,然后求含${x^{\frac{3}{2}}}$的项的系数;
(3)先求得展开式的通项公式,在通项公式中令x的幂指数为有理数,求得r的值,即可求得展开式中有理项.
(4)写出二项式的二项式系数,根据二项式系数的性质得到结果.

解答 解:(1)${(\frac{a}{x}-\sqrt{x})^6}(a>0)$的展开式中Tr+1=${C}_{6}^{r}$($\frac{a}{x}$)6-r(-$\sqrt{x}$)r=(-1)ra6-r ${C}_{6}^{r}$x6-$\frac{3r}{2}$;
$\frac{3r}{2}$-6=0⇒r=4.
∴二项式${(\frac{a}{x}-\sqrt{x})^6}(a>0)$的展开式中的常数项为:(-1)4a6-4•${C}_{6}^{4}$=15a2=60.
∴a=±2
∵a>0,
∴a=2.
(2)Tr+1=${C}_{6}^{r}$•($\frac{a}{x}$)6-r•(-$\sqrt{x}$)r═(-1)ra6-r.${C}_{6}^{r}$•x${\;}^{6-\frac{r}{2}}$.
依题意得$\frac{3r}{2}$-6=$\frac{3}{2}$,
则r=5.
故(-1)5×2×${C}_{6}^{5}$=-12为所求的项的系数;
(3)设第k+1项为有理项,则Tk+1=C6k•a6-k•xk-6•(-x)${\;}^{\frac{k}{2}}$.
∵0≤k≤6,要使k-6+$\frac{k}{2}$∈Z,只有使k分别取4,6.
∴所求的有理项应为:T5=120,T7=-2x3
(4)展开式中二项式系数最大的项是第4项:${C}_{6}^{3}$$(\frac{2}{x})$3•$(-\sqrt{x})$3=-960x${\;}^{-\frac{3}{2}}$.
二项式的展开式的系数最大的项为第r项,
所以$\left\{\begin{array}{l}{{T}_{r+1}≥{T}_{r}}\\{{T}_{r+1}≥{T}_{r+2}}\end{array}\right.$,即$\left\{\begin{array}{l}{{C}_{6}^{r}{2}^{6-r}(-1)^{r}{≥C}_{6}^{r-1}{2}^{7-r}(-1)^{r-1}}\\{{C}_{6}^{r}{2}^{6-r}(-1)^{r}≥{C}_{6}^{r+1}{2}^{8-r}(-1)^{r+1}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{r≤5}\\{r≥4}\end{array}\right.$,
所以r=4或5,
所以展开式中系数最大的项是第4项或第5项.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.某年级文科班共有4个班级,每班各有40位学生(其中男生8人,女生32人).若从该年级文科生中以简单随机抽样抽出20人,则下列选项中正确的是(  )
A.每班至少会有一人被抽中
B.抽出来的女生人数一定比男生人数多
C.已知小文是男生,小美是女生,则小文被抽中的概率小于小美被抽中的概率
D.若学生甲和学生乙在同一班,学生丙在另外一班,则甲、乙、丙三人各自被抽中的概率相等

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,已知扇形AOB的圆心角为120°,半径长为6,求弓形ACB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.数列{$\frac{1}{n(n+2)}$}的前n项的和记为Sn,则Sn=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在某次物理考试中,考生的成绩ξ服从正态分布,即ξ:N(70,100),已知满分为100分.
(1)试求考试成绩ξ位于区间(50,90)内的概率;
(2)若这次考试共有1000名学生参加,试估计这次考试及格(不小于60分)的人数.
(附:若ξ:N(μ,σ2),则P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544,P(μ-3σ<ξ<μ+3σ)=0.9974)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设等差数列{an}的公差为d,若数列$\left\{{{{(\frac{1}{2})}^{{a_1}{a_n}}}}\right\}$为递增数列,则(  )
A.d>0B.d<0C.a1d<0D.a1d>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的部分图象如图所示,则满足f(x)≥1的x的区间为[kπ,$\frac{π}{3}$+kπ],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,周期为$\frac{π}{2}$的偶函数是(  )
A.y=sin2xcos2xB.y=cos22x-sin22xC.$y=\frac{tanx}{{1-{{tan}^2}x}}$D.y=2cos2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,已知AB=4,BC=2,∠B=60°,则AC的长为(  )
A.2$\sqrt{3}$B.12C.2$\sqrt{7}$D.28

查看答案和解析>>

同步练习册答案