精英家教网 > 高中数学 > 题目详情
14.已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的部分图象如图所示,则满足f(x)≥1的x的区间为[kπ,$\frac{π}{3}$+kπ],k∈Z.

分析 根据函数的图象求出周期T和ω,得出φ的值,即可写出f(x)的解析式,再根据正弦函数的图象与性质求出f(x)≥1的解集即可.

解答 解:根据题意,$\frac{T}{2}$=$\frac{11π}{12}$-$\frac{5π}{12}$=$\frac{π}{2}$,
∴T=$\frac{2π}{ω}$=π,解得ω=2;
又函数f(x)过点(0,1),($\frac{5π}{12}$,0),
即f(0)=Asinφ=1,
f($\frac{5π}{12}$)=Asin($\frac{5π}{6}$+φ)=0;
∴φ=$\frac{π}{6}$,A=2;
∴f(x)=2sin(2x+$\frac{π}{6}$),
又f(x)≥1,
即2sin(2x+$\frac{π}{6}$)≥1,
∴sin(2x+$\frac{π}{6}$)≥$\frac{1}{2}$,
即$\frac{π}{6}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{5π}{6}$+2kπ,k∈Z,
解得kπ≤x≤$\frac{π}{3}$+kπ,k∈Z;
故所求不等式的解集为[kπ,$\frac{π}{3}$+kπ],k∈Z.
故答案为:[kπ,$\frac{π}{3}$+kπ],k∈Z.

点评 本题考查了根据函数的部分图象求解析式的应用问题,也考查了利用正弦函数的图象与性质求不等式解集的问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.将函数f(x)=$\sqrt{3}$cos2x+sin2x的图象向右平移$\frac{π}{6}$个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,且满足|g(x)|≤a恒成立,则a的最小值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow a,\overrightarrow b$的夹角为$\frac{5π}{6}$,且$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\sqrt{3}$,$\overrightarrow c=2\overrightarrow a+3\overrightarrow b$,则$|{\overrightarrow c}|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在${(\frac{a}{x}-\sqrt{x})^6}(a>0)$的展开式中,常数项为60.
(1)求a;
(2)求含${x^{\frac{3}{2}}}$的项的系数;
(3)求展开式中所有的有理项.
(4)求展开式中系数最大的项和二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知tanα=2,则$\frac{{{{sin}^3}α-2{{cos}^3}α}}{{sinα•{{cos}^2}α}}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=x3+sinx+1,若f(a)=2,则f(-a)=(  )
A.0B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知⊙O1与⊙O2相交于点M,N,NA为⊙O2的直径,连接AM交⊙O1于点B,点C为$\widehat{AM}$的中点,连接CN分别与直线AB,⊙O1交于点D,E.求证:
(1)AC∥BE
(2)CD•BE2=CN•DE2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若$tan(θ-\frac{π}{4})=\frac{1}{3}$,则tanθ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2)(n为正整数).设数列{bn}满足bn=$\left\{\begin{array}{l}{{a}_{n},n为偶数}\\{{2}^{{a}_{n}},n为奇数}\end{array}\right.$,求Tn=b1+b2+…+bn

查看答案和解析>>

同步练习册答案