精英家教网 > 高中数学 > 题目详情
8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(2,$\sqrt{2}$),离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程:
(2)若直线L与椭圆C交于不同的两点A,B,且线段AB的中点N(1,1),求直线L的方程.

分析 (1)由题意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{4}{{a}^{2}}+\frac{2}{{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得即可得出.
(2)设A(x1,y1),B(x2,y2).代入椭圆方程可得:$\frac{{x}_{1}^{2}}{8}+\frac{{y}_{1}^{2}}{4}=1$,$\frac{{x}_{2}^{2}}{8}+\frac{{y}_{2}^{2}}{4}$=1,两式相减并且利用中点坐标公式与斜率计算公式可得$\frac{2}{8}+\frac{2k}{4}$=0,解得k即可得出.

解答 解:(1)由题意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{4}{{a}^{2}}+\frac{2}{{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a2=8,b2=c2=4.
∴椭圆C的方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1.
(2)设A(x1,y1),B(x2,y2).
代入椭圆方程可得:$\frac{{x}_{1}^{2}}{8}+\frac{{y}_{1}^{2}}{4}=1$,$\frac{{x}_{2}^{2}}{8}+\frac{{y}_{2}^{2}}{4}$=1,
两式相减可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{8}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{4}$=0,
又x1+x2=2,y1+y2=2,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=k,
可得$\frac{2}{8}+\frac{2k}{4}$=0,解得k=$-\frac{1}{2}$.
∴直线L的方程为y-1=$-\frac{1}{2}$(x-1),
化为:x+2y-3=0.

点评 本题考查了椭圆的标准方程及其性质、“点差法”、点斜式、中点坐标公式、斜率计算公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,点P(1,0),以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的方程为:ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$.
(1)求曲线C的直角坐标方程;
(2)直线L过点P交曲线C于A,B两点,且满足|PA|•|PB|=$\frac{6}{5}$,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在直三棱柱ABC-A1B1C1中,AB=AC,BD=DC,AF=C1F.
(1)求证:平面ADC1⊥平面BCC1B1
(2)求证:DF∥平面A1ABB1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点C在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,以C为圆心的圆与x轴相切于椭圆的右焦点F,若圆C与y轴相切,则椭圆的离心率为(  )
A.$\sqrt{2}$-1B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)在区间(0,+∞)上是单调递减的,试比较f(a2-a+1)与$f(\frac{3}{4})$的大小f(a2-a+1)$≤f(\frac{3}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知O、A、B、C、D、F、F、G、H为空间9个点(如图),并且$\overrightarrow{OE}$=k$\overrightarrow{OA}$,$\overrightarrow{OF}$=k$\overrightarrow{OB}$,$\overrightarrow{OH}$=k$\overrightarrow{OD}$,$\overrightarrow{AC}$=$\overrightarrow{AD}$+m$\overrightarrow{AB}$,$\overrightarrow{EG}$=$\overrightarrow{EH}$+m$\overrightarrow{EF}$.求证:
(1)A,B,C,D四点共面;
(2)$\overrightarrow{AC}$∥$\overrightarrow{EG}$;
(3)$\overrightarrow{OG}$=k$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(2cosx,2),$\overrightarrow{b}$=(cosx,$\frac{1}{2}$),记函数f(x)=$\overrightarrow{a}•\overrightarrow{b}+\sqrt{3}sin2x$
(1)求函数f(x)的最值以及取得最值时x的集合:
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.比较下列各组数中两个值的大小:
(1)log35.4,log35.5;
(2)lg0.02,1g3.12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.当m为何值时,方程x2-2(m-1)x+3m2=11有两个相等的实数解?

查看答案和解析>>

同步练习册答案