分析 (1)连接BE,设BE∩OC=G,由题意G为△ABC的重心,可得$\frac{BG}{GE}$=2,连接DG,利用EF∥平面COD,可得EF∥DG,进而得出F点的位置.
(2)由PO⊥平面ABC,可得OC⊥PO,利用线面面面垂直的判定与性质定理可得OC⊥平面POB.OC⊥OD.利用VA-OCD=VD-AOC,即可得出.
解答 解:(1)连接BE,设BE∩OC=G,由题意G为△ABC的重心,∴$\frac{BG}{GE}$=2,![]()
连接DG,
∵EF∥平面COD,EF?平面BEF,平面BEF∩平面COD=DG,
∴EF∥DG,
∴$\frac{BD}{DF}$=$\frac{BG}{GE}$=2,
又BD=DP,∴DF=PF=$\frac{1}{4}$PB.
∴点F是PB上靠近点P的四等分点.
(2)由PO⊥平面ABC,OC?平面ABC,
∴OC⊥PO,又点C是弧AB的中点,OC⊥AB,∴OC⊥平面POB.
OD?平面POB,∴OC⊥OD.
S△COD=$\frac{1}{2}$OC•OD=$\frac{1}{2}×1×\frac{\sqrt{5}}{2}$=$\frac{\sqrt{5}}{4}$.
∵VA-OCD=VD-AOC,∴$\frac{1}{3}$•S△COD•d=$\frac{1}{3}{S}_{△AOC}$•$\frac{1}{2}$PO,
∴$\frac{1}{3}×\frac{\sqrt{5}}{4}$d=$\frac{1}{3}×\frac{1}{2}×{1}^{2}×1$,
∴点A到面COD的距离$\frac{2\sqrt{5}}{5}$.
点评 本题考查了空间位置关系、空间距离、线面面面平行与垂直的判定与性质定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 班别 | 高一(1)班 | 高一(2)班 | 高一(3)班 |
| 人数 | 3 | 6 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(1)<f(0)<f(-2) | B. | f(1)>f(0)>f(-2) | C. | f(0)>f(1)>f(-2) | D. | f(0)<f(-2)<f(1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 钝角三角形 | ||
| C. | 直角三角形 | D. | 等腰三角形或直角三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com