精英家教网 > 高中数学 > 题目详情
6.在四菱锥P-ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.
(I)求证:PA⊥AB;
(II)求直线AD与平面PCD所成角的大小.

分析 (I)取CD的中点E,连接AE,PE,则AE⊥CD,PE⊥CD,证明PA⊥平面ABCD,即可证明:PA⊥AB;
(II)求出A到平面PCD的距离,即可求直线AD与平面PCD所成角的大小.

解答 (I)证明:取CD的中点E,连接AE,PE,则AE⊥CD,PE⊥CD,
∵AE∩PE=E,∴CD⊥平面PAE.
∵PA?平面PAE,∴CD⊥PA,
∵PA⊥AD,AD∩CD=D,
∴PA⊥平面ABCD,
∵AB?平面ABCD,
∴PA⊥AB;
(II)解:由题意,AD=PE=$\sqrt{2}$.
设A到平面PCD的距离为h,则由等体积可得$\frac{1}{3}×\frac{1}{2}×2×\sqrt{2}h$=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{2}×1$,
∴h=$\frac{\sqrt{2}}{2}$
∴直线AD与平面PCD所成角的正弦值为$\frac{\frac{\sqrt{2}}{2}}{\sqrt{2}}$=$\frac{1}{2}$,大小为30°.

点评 本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:解答题

选修4-5:不等式选讲

已知函数

(1)若,求不等式的解集;

(2)若方程有三个不同的解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若m2+n2=t2(m,n,t为实数,且t≠0),则$\frac{n}{m-2t}$的取值集合是$[-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=a(x-2)ex+lnx+$\frac{1}{x}$在(0,2)上存在两个极值点,则a的取值范围为(  )
A.(-∞,-$\frac{1}{4{e}^{2}}$)B.(-$\frac{1}{e}$,$\frac{1}{4{e}^{2}}$)∪(1,+∞)
C.(-∞,-$\frac{1}{e}$)D.(-∞,-$\frac{1}{e}$)∪(--$\frac{1}{e}$,-$\frac{1}{4{e}^{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则$\frac{|\overrightarrow{a}|}{\overrightarrow{a}•\overrightarrow{b}}$的取值范围为[$\frac{2}{5}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出下列结论:动点M(x,y)分别到两定点(-4,0),(4,0)连线的斜率之积为-$\frac{9}{16}$,设M(x,y)的轨迹为曲线C,F1、F2分别曲线C的左、右焦点,则下列命题中:
(1)曲线C的焦点坐标为F1(-5,0)、F2(5,0);
(2)曲线C上存在一点M,使得S${\;}_{△{F}_{1}P{F}_{2}}$=9;
(3)P为曲线C上一点,P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的值为$\frac{23}{9}$;
(4)设A(1,1),动点P在曲线C上,则|PA|-|PF2|的最大值为$\sqrt{9-2\sqrt{7}}$;
其中正确命题的序号是(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.F是抛物线y2=4x的焦点,P、Q是抛物线上两点,|PF|=2,|QF|=5,则|PQ|=(  )
A.3$\sqrt{5}$B.4$\sqrt{3}$C.3$\sqrt{5}$或$\sqrt{13}$D.3$\sqrt{5}$或4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.i是虚数单位,(1-i)Z=2i,则复数Z的模|Z|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)的表达式为f(x)=$\frac{ax+b}{cx+d}$ (c≠0),则函数f(x)的图象的对称中心为(-$\frac{d}{c}$,$\frac{a}{c}$),现已知函数f(x)=$\frac{2-2x}{2x-1}$,数列{an}的通项公式为an=f($\frac{n}{2017}$)(n∈N),则此数列前2017项的和为-2016.

查看答案和解析>>

同步练习册答案