分析 (I)取CD的中点E,连接AE,PE,则AE⊥CD,PE⊥CD,证明PA⊥平面ABCD,即可证明:PA⊥AB;
(II)求出A到平面PCD的距离,即可求直线AD与平面PCD所成角的大小.
解答
(I)证明:取CD的中点E,连接AE,PE,则AE⊥CD,PE⊥CD,
∵AE∩PE=E,∴CD⊥平面PAE.
∵PA?平面PAE,∴CD⊥PA,
∵PA⊥AD,AD∩CD=D,
∴PA⊥平面ABCD,
∵AB?平面ABCD,
∴PA⊥AB;
(II)解:由题意,AD=PE=$\sqrt{2}$.
设A到平面PCD的距离为h,则由等体积可得$\frac{1}{3}×\frac{1}{2}×2×\sqrt{2}h$=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{2}×1$,
∴h=$\frac{\sqrt{2}}{2}$
∴直线AD与平面PCD所成角的正弦值为$\frac{\frac{\sqrt{2}}{2}}{\sqrt{2}}$=$\frac{1}{2}$,大小为30°.
点评 本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:解答题
选修4-5:不等式选讲
已知函数
.
(1)若
,求不等式
的解集;
(2)若方程
有三个不同的解,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{1}{4{e}^{2}}$) | B. | (-$\frac{1}{e}$,$\frac{1}{4{e}^{2}}$)∪(1,+∞) | ||
| C. | (-∞,-$\frac{1}{e}$) | D. | (-∞,-$\frac{1}{e}$)∪(--$\frac{1}{e}$,-$\frac{1}{4{e}^{2}}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3$\sqrt{5}$ | B. | 4$\sqrt{3}$ | C. | 3$\sqrt{5}$或$\sqrt{13}$ | D. | 3$\sqrt{5}$或4$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com