精英家教网 > 高中数学 > 题目详情
已知椭圆的上.下两个焦点分别为,点为该椭圆上一点,若为方程的两根,则=           
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

14分)已知椭圆中心在原点,焦点在x轴上,一个顶点为A(0,-1),且其右焦点到直线x-y+=0的距离为3.(I)求椭圆的方程;
(II)是否存在斜率为k(k≠0)的直线l,使l与已知椭圆交于不同的两点M、N,
且|AN|=|AM|?若存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)设F1F2分别为椭圆C =1(ab>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若MN是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PMPN的斜率都存在,并记为kPMkPN时,那么kPMkPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2分别为椭圆C: =1(a>b>0)的左、右焦点.
(Ⅰ)若椭圆上的点A(1,)到点F1、F2的距离之和等于4,求椭圆C的方程;
(Ⅱ)设点是(Ⅰ)中所得椭圆C上的动点,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)双曲线与椭圆有相同的焦点,直线是双曲线
一条渐近线.
(1)求双曲线的方程;
(2)已知过点的直线与双曲线交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中心在坐标原点,焦点在x轴上的椭圆,它的离心率为,与直线x+y-1=0相交于两点M、N,且OM⊥ON.求椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)若椭圆的离心率等于,抛物线的焦点在椭圆的顶点上。
(1)求抛物线的方程;
(2)求过点的直线与抛物线两点,又过作抛物线的切线,当时,求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率为e,焦点为F1、F2,抛物线C以F1为顶点,F2为焦点.设P为两条曲线的一个交点,若,则e的值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的左右焦点分别为,弦,若的内切圆周长为两点的坐标分别为,则值为()
A.B.C.D.

查看答案和解析>>

同步练习册答案