精英家教网 > 高中数学 > 题目详情

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

(1)根据散点图判断, 哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说出理由);

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)已知这种产品的年利润的关系为,根据(2)的结果求:年宣传费为何值时,年利润最大?

附:对于一组数据 ,…,其回归直线的斜率和截距的最小二乘估计分别为

【答案】(1)选;(2);(3)

【解析】试题分析:(1)由于散点图是曲线的形式,故选择作为回归方程类型.(2)将数据代入回归直线方程的计算公式,可计算得回归直线方程为.(3)利用(2)的结论,写出年利润的表达式,利用二次函数求最值的方法可求得当时年利润取得最大值.

试题解析:

(1)选

(2)令

由表可知:

所以关于的回归方程为:

(3)由(2)可知:年利润

所以当,即时, 最大.

故年宣传费为千元时,年利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 为圆柱的母线, 是底面圆的直径, 分别是的中点,

(1)证明: ∥平面

(2)求圆柱的体积和表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新一届中央领导集体非常重视勤俭节约,从光盘行动节约办春晚到饭店吃饭是吃光盘子或时打包带走,称为光盘族,否则称为非光盘族.政治课上政治老师选派几位同学组成研究性小组,从某社区[25,55]岁的人群中随机抽取人进行了一次调查,得到如下统计表:

组数

分组

频数

频率

光盘族占本组比例

1

[25,30

50

005

30%

2

[30,35

100

010

30%

3

[35,40

150

015

40%

4

[40,45

200

020

50%

5

[45,50

a

b

65%

6

[50,55

200

020

60%

1)求的值,并估计本社区[25,55)岁的人群中光盘族所占比例;

2)从年龄段在[35,45)的光盘族中采用分层抽样方法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队.求选取的2名领队分别来自[35,40)与[40,45)两个年龄段的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校随机抽取部分新生调查其上学路上所需时间单位:分钟,并将所得数据绘制成频率分布直方图如图,其中,上学路上所需时间的范围是,样本数据分组为.

1求直方图中的值;

2如果上学路上所需时间不少于60分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;

3现有6名上学路上时间小于分钟的新生,其中2人上学路上时间小于分钟. 从这6人中任选2人,设这2人中上学路上时间小于分钟人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点在原点,左焦点,左顶点,上顶点的周长为的面积为.

(I)求椭圆的标准方程;

II)是否存在与椭圆交于两点的直线使得成立?若存在,求出实数的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,,,平面平面相交于点.

(1)求证:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直角梯形所在的平面垂直于平面,.

1在直线上是否存在一点,使得平面?请证明你的结论.

2求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,解关于的不等式

(2)若关于的不等式的解集是,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.

(1)求频率分布直方图中的值;

(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;

(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.

查看答案和解析>>

同步练习册答案