精英家教网 > 高中数学 > 题目详情
3.已知函数f(x),g(x)满足关系g(x)=f(x)•f(x+α),其中α是常数.
(1)若f(x)=cosx+sinx,α=$\frac{π}{2}$,求g(x)的解析式,并写出g(x)的递增区间;
(2)设f(x)=x,若g(x)≥1在$x∈[\frac{1}{2},+∞)$上恒成立,求常数α的取值范围.

分析 (1)由f(x)=cosx+sinx,$α=\frac{π}{2}$,求出f(x+α),然后求解g(x)的解析式.得到递增区间即可.
(2)转化g(x)=x•(x+α)≥1,为$α≥\frac{1}{x}-x$,令$h(x)=\frac{1}{x}-x$,利用函数的单调性求解最值,得到a的范围.

解答 解:(1)∵f(x)=cosx+sinx,$α=\frac{π}{2}$,
∴f(x+α)=cosx-sinx;
∴g(x)=cos2x…(4分),
由π+2kπ≤2x≤2π+2kπ,k∈Z,可得x∈$[{\frac{1}{2}π+kπ,π+kπ}]$,(k∈Z)
递增区间为$[{\frac{1}{2}π+kπ,π+kπ}]$,(k∈Z)(注:开区间或半开区间均正确) …(6分)
(2)∵g(x)=x•(x+α)≥1,当$x∈[{\frac{1}{2},+∞})$时,$α≥\frac{1}{x}-x$…(8分)
令$h(x)=\frac{1}{x}-x$,则函数y=h(x)在$x∈[{\frac{1}{2},+∞})$上递减…(10分)
所以$h{(x)_{max}}=h(\frac{1}{2})=\frac{3}{2}$…(12分)
因而,当$α≥\frac{3}{2}$时,g(x)≥1在$x∈[{\frac{1}{2},+∞})$上恒成立…(14分)

点评 本题考查函数与方程的应用,函数的单调性以及函数的最值的求法,函数恒成立,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知a,b,c分别为△ABC三个内角A,B,C的对边,$a=\sqrt{3}b•sinA-acosB$
(1)求角B.
(2)若b=2,△ABC的面积为$\sqrt{3}$,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某校为了调查“学业水平考试”学生的数学成绩,随机地抽取该校甲、乙两班各10名同学,获得的数据如下:(单位:分)
甲:132,108,112,121,113,121,118,127,118,129;
乙:133,107,120,113,121,116,126,109,129,127.
(1)以百位和十位为茎,个位为叶,在图5中作出以上抽取的甲、乙两班学生数学成绩的茎叶图,求出这20个数据的众数,并判断哪个班的平均水平较高;
(2)将这20名同学的成绩按下表分组,现从第一、二、三组中,采用分层抽样的方法抽取6名同学成绩作进一步的分析,求应从这三组中各抽取的人数.
组别第一第二第三第四
分值区间[100,110)[110,120)[120,130)[130,140]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某校学生会进行了一次关于“消防安全”的调查活动,组织部分学生干部在几个大型小区随机抽取了50名居民进行问卷调查.活动结束后,团委会对问卷结果进行了统计,并将其中“是否知道灭火器使用方法(知道或不知道)”的调查结果统计如下表:
年龄(岁)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]
频数mn151073
知道的人数4612632
表中所调查的居民年龄在[10,20),[20,30),[30,40)的人数成等差数列.
(Ⅰ)求上表中的m,n值,若从年龄在[20,30)的居民中随机选取两人,求这两人至少有一人知道灭火器使用方法的概率;
(Ⅱ)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取2人参加消防知识讲座,记选中的4人中不知道灭火器使用方法的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=|x-a|-|x-4a|(a>0),若对?x∈R,都有f(2x)-1≤f(x),则实数a的最大值为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某公园有个池塘,其形状为直角△ABC,∠C=90°,AB的长为2百米,BC的长为1百米.
(1)若准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D、E、F,如图(1),使得EF∥AB,EF⊥ED,在△DEF内喂食,求当△DEF的面积取最大值时EF的长;
(2)若准备建造一个荷塘,分别在AB、BC、CA上取点D、E、F,如图(2),建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,记∠FEC=α,求△DEF边长的最小值及此时α的值.(精确到1米和0.1度)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.${({{x^2}-\frac{1}{x}})^n}$展开式的二项式系数和为64,则其常数项为(  )
A.-20B.-15C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=lg(x2-2x+3)的定义域为(-∞,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,把函数g(x)=f(x)-x的零点按从小到大的顺序排列成一个数列{an},则该数列的通项公式为(  )
A.an=$\frac{n-1}{2}$B.an=n-1C.an=(n-1)2D.an=2n-2

查看答案和解析>>

同步练习册答案