精英家教网 > 高中数学 > 题目详情
15.${({{x^2}-\frac{1}{x}})^n}$展开式的二项式系数和为64,则其常数项为(  )
A.-20B.-15C.15D.20

分析 根据${({{x^2}-\frac{1}{x}})^n}$展开式的二项式系数和求出n的值,再利用展开式的通项公式求出常数项.

解答 解:∵${({{x^2}-\frac{1}{x}})^n}$展开式的二项式系数和为64,
∴2n=64,解得n=6;
∴${{(x}^{2}-\frac{1}{x})}^{6}$展开式的通项公式为
Tr+1=${C}_{6}^{r}$•(x26-r•${(-\frac{1}{x})}^{r}$=(-1)r•${C}_{6}^{r}$•x12-3r
令12-3r=0,解得r=4;
∴常数项为(-1)4•${C}_{6}^{4}$=15.
故选:C.

点评 本题考查了二项式定理的应用问题,重点考查了展开式的二项式系数和以及通项公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知两条不同的直线l,m和两个不同的平面α,β,有如下命题:
①若l?α,m?α,l∥β,m∥β,则α∥β;
②若l?α,l∥β,α∩β=m,则l∥m;
③若α⊥β,l⊥β,则l∥α,
其中正确命题的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=alnx-ax-3(a≠0).
(1)讨论f(x)的单调性;
(2)若f(x)+(a+1)x+4-e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x),g(x)满足关系g(x)=f(x)•f(x+α),其中α是常数.
(1)若f(x)=cosx+sinx,α=$\frac{π}{2}$,求g(x)的解析式,并写出g(x)的递增区间;
(2)设f(x)=x,若g(x)≥1在$x∈[\frac{1}{2},+∞)$上恒成立,求常数α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.${(x-\sqrt{3}y)^8}$的展开式中x6y2项的系数是(  )
A.28B.84C.-28D.-84

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=alnx-ax-3(a∈R).
(1)当a=-1时,求函数f(x)的单调区间;
(2)若函数y=f(x)在x=1处有极值-4,且关于x的方程x2f′(x)+kex=1恰有两个不同的实根,求实数k的值;
(3)求证:$\frac{ln2}{2}$×$\frac{ln3}{3}$×$\frac{ln4}{4}$×…×$\frac{lnn}{n}$<$\frac{1}{n}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知O是正三角形△ABC内部的一点,$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,则△OAC的面积与△OAB的面积之比是(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.数列{an}满足a1=1,a2=3,an+2=an+1-an,n∈N*,则a2015=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设等差数列{an}的前n项和为Sn,且满足S17>0,S18<0,则$\frac{{S}_{1}}{{a}_{1}}$,$\frac{{S}_{2}}{{a}_{2}}$,…,$\frac{{S}_{15}}{{a}_{15}}$中最大的项为(  )
A.$\frac{{S}_{7}}{{a}_{7}}$B.$\frac{{S}_{8}}{{a}_{8}}$C.$\frac{{S}_{9}}{{a}_{9}}$D.$\frac{{S}_{10}}{{a}_{10}}$

查看答案和解析>>

同步练习册答案