分析 (1)先求导,再分类讨论即可得到函数的单调性;
(2)令F(x)=alnx-ax-3+(a+1)x+4-e=alnx+x+1-e,从而求导F′(x)=$\frac{x+a}{x}$,再由导数的正负讨论确定函数的单调性,从而求函数的最大值,从而化恒成立问题为最值问题即可.
解答 解:(Ⅰ)f′(x)=$\frac{a}{x}$-a=$\frac{a-ax}{x}$=$\frac{a(1-x)}{x}$(x>0),
当a>0时,f(x)的单调增区间为(0,1],单调减区间为[1,+∞);
当a<0时,f(x)的单调增区间为[1,+∞),单调减区间为(0,1];
(Ⅱ)令F(x)=alnx-ax-3+(a+1)x+4-e=alnx+x+1-e,则F′(x)=$\frac{x+a}{x}$,
若-a≤e,即a≥-e,
F(x)在[e,e2]上是增函数,
F(x)max=F(e2)=2a+e2-e+1≤0,
a≤$\frac{1}{2}$(e-1-e2),无解.
若e<-a≤e2,即-e2≤a<-e,
F(x)在[e,-a]上是减函数;在[-a,e2]上是增函数,
F(e)=a+1≤0,即a≤-1.
F(e2)=2a+e2-e+1≤0,即a≤$\frac{1}{2}$(e-1-e2),
∴-e2≤a≤$\frac{1}{2}$(e-1-e2).
若-a>e2,即a<-e2,
F(x)在[e,e2]上是减函数,
F(x)max=F(e)=a+1≤0,即a≤-1,
∴a<-e2,
综上所述,a≤$\frac{1}{2}$(e-1-e2).
点评 本题考查了导数与函数单调性,以及考查了恒成立问题及分类讨论的数学思想应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=3x2或y=-3x2 | B. | y=3x2 | C. | y2=-9x或y=3x2 | D. | y=-3x2或y2=9x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 组别 | 第一 | 第二 | 第三 | 第四 |
| 分值区间 | [100,110) | [110,120) | [120,130) | [130,140] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄(岁) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] |
| 频数 | m | n | 15 | 10 | 7 | 3 |
| 知道的人数 | 4 | 6 | 12 | 6 | 3 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -20 | B. | -15 | C. | 15 | D. | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com