精英家教网 > 高中数学 > 题目详情
4.已知复数z=3-2i-$\frac{5i}{2-i}$,则复数z对应复平面上的点Z位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数代数形式的乘除运算化简,求出z的坐标得答案.

解答 解:∵z=3-2i-$\frac{5i}{2-i}$=$3-2i-\frac{5i(2+i)}{(2-i)(2+i)}=3-2i-\frac{-5+10i}{5}$=3-2i+1-2i=4-4i,
∴复数z对应复平面上的点Z的坐标为(4,-4),位于第四象限.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}a•{2^x}(x≤0)\\{log_2}x(x>0)\end{array}$,若关于x的方程f[f(x)]=0有且只有一个实数根,则实数a的取值范围是(  )
A.(-∞,0)B.(-∞,0)∪(0,1)C.(0,1)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设某几何体的三视图如图,则该几何体的体积为4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.把函数y=sin(2x+$\frac{π}{6}$)的图象向右平移$\frac{π}{6}$个单位得到函数f(x)的图象,则下列说法正确的是(  )
A.f(x)的图象关于y轴对称B.f(x)的图象关于原点对称
C.f(x)的图象关于直线x=$\frac{π}{3}$对称D.f(x)的图象关于点($\frac{π}{3}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是同一平面内的三个向量,其中$\overrightarrow{a}$=(2,1).
(1)若|$\overrightarrow{c}$|=3$\sqrt{5}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求$\overrightarrow{c}$的坐标;
(2)若|$\overrightarrow{b}$|=$\frac{\sqrt{5}}{2}$,且$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$垂直,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线C与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1有相同的焦点F1、F2,点P为双曲线C与椭圆的一个交点,且满足|PF1|=2|PF2|,则双曲线C的渐近线方程是(  )
A.y=±$\sqrt{3}$xB.y=±$\sqrt{2}$xC.y=±xD.y=±$\frac{\sqrt{3}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx+$\frac{ax}{x+1}$,其中a为实常数.
(Ⅰ)当a=1时,计算由曲线y=f(x)-lnx和直线x=0,x=2以及x轴所围图形的面积S;
(Ⅱ)若f(x)在(0,+∞)上是增函数,求a的取范围;
(Ⅲ)若f(x)有两个不同的极值点x1,x2,当x>0时,比较$\frac{f({x}_{1})+f({x}_{2})}{x+1}$与$\frac{f(x)-x+1}{x}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆C:x2+y2=4关于直线x+2y-5=0对称的圆的方程为(x-2)2+(y-4)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列对应关系中是集合A到集合B的函数的个数是(  )
①A=R,B={x|x>0},f:x→y=|x|;
②A=Z,B=Z,f:x→y=x2
③A=Z,B=Z,f:x→y=$\sqrt{x}$;
④A=[-1,1],B={0}.f:x→y=0;
⑤A={1,2,3},B={4,5,6},对应关系如图.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案