| A. | (-∞,0) | B. | (-∞,0)∪(0,1) | C. | (0,1) | D. | (0,1)∪(1,+∞) |
分析 利用换元法设f(x)=t,则方程等价为f(t)=0,根据指数函数和对数函数图象和性质求出t=1,利用数形结合进行求解即可.
解答
解:令f(x)=t,则方程f[f(x)]=0等价为f(t)=0,
由选项知a≠0,
当a>0时,当x≤0,f(x)=a•2x>0,
当x>0时,由f(x)=log2x=0得x=1,
即t=1,作出f(x)的图象如图:
若a<0,则t=1与y=f(x)只有一个交点,恒满足条件,
若a>0,要使t=1与y=f(x)只有一个交点,
则只需要当x≤0,t=1与f(x)=a•2x,没有交点,
即此时f(x)=a•2x<1,
即f(0)<1,
即a•20<1,
解得0<a<1,
综上0<a<1或a<0,
即实数a的取值范围是(-∞,0)∪(0,1),
故选:B.
点评 本题主要考查函数方程根的个数的应用,利用换元法求出t=1是解决本题的关键.注意利用指数函数和对数函数的图象,结合数形结合是解决本题的关键.综合性较强.
科目:高中数学 来源: 题型:选择题
| A. | x=0 | B. | x=2 | C. | y=2 | D. | y=4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(a)>0 | B. | f(a)<0 | ||
| C. | f(a)可以等于0 | D. | f(a)的符号不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com