精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+?)(A>0,ω>0,|?|<
π
2
)
的部分图象如图所示,则要想得到y=2sin2x的图象,只需将f(x)的图象(  )
分析:根据图象求出φ的值,再由“左加右减”法则判断出函数图象平移的方向和单位长度.
解答:解:由图知(
π
6
,A)是第二个关键点,故2×
π
6
+φ=
π
2
,解得φ=
π
6
,再由2(x-
π
12
+
π
6
=2x得,
要想得到g(x)=sin2x的图象只需将f(x)的图象向右平移
π
12
个单位即可,
故选D.
点评:本题主要考查了三角函数的函数图象,根据函数图象求解析式时,注意应用正弦函数图象的关键点进行求解,考查了读图能力和图象变换法则.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案