【题目】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
![]()
(1)证明:BE⊥DC;
(2)求直线BE与平面PBD所成角的正弦值;
(3)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.
【答案】(1)见解析(2)
(3)
【解析】试题分析:(I)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC的方向向量,根据
,可得BE⊥DC;(II)求出平面PBD的一个法向量,代入向量夹角公式,可得直线BE与平面PBD所成角的正弦值;(Ⅲ)根据BF⊥AC,求出向量
的坐标,进而求出平面FAB和平面ABP的法向量,代入向量夹角公式,可得二面角F-AB-P的余弦值
试题解析:方法一:依题意,以点A为原点建立空间直角坐标系(如图所示),可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2).C由E为棱PC的中点,得E(1,1,1).
![]()
(1)证明:向量
=(0,1,1),
=(2,0,0),
故
=0,
所以BE⊥DC.
(2)向量
=(-1,2,0),
=(1,0,-2).
设n=(x,y,z)为平面PBD的法向量,
则
![]()
不妨令y=1,可得n=(2,1,1)为平面PBD的一个法向量.于是有
=
=
=
,
所以直线BE与平面PBD所成角的正弦值为
.
(3) 向量
=(1,2,0),
=(-2,-2,2),
=(2,2,0),
=(1,0,0).
由点F在棱PC上,设
=λ
,0≤λ≤1.
故
=
+
=
+λ
=(1-2λ,2-2λ,2λ).由BF⊥AC,得
=0,因此2(1-2λ)+2(2-2λ)=0,解得λ=
,即
=
.设n1=(x,y,z)为平面FAB的法向量,
即
不妨令z=1,可得n1=(0,-3,1)为平面FAB的一个法向量.取平面ABP的法向量n2=(0,1,0),则
cos〈n1,n2〉=
=
=-
.
易知二面角F AB P是锐角,所以其余弦值为
.
方法二:(1)证明:如图所示,取PD中点M,连接EM,AM.由于E,M分别为PC,PD的中点,故EM∥DC,且EM=
DC.又由已知,可得EM∥AB且EM=AB,故四边形ABEM为平行四边形,所以BE∥AM.
因为PA⊥底面ABCD,故PA⊥CD,而CD⊥DA,从而CD⊥平面PAD.因为AM平面PAD,所以CD⊥AM.又BE∥AM,所以BE⊥CD.
![]()
(2)连接BM,由(1)有CD⊥平面PAD,得CD⊥PD.而EM∥CD,故PD⊥EM.又因为AD=AP,M为PD的中点,所以PD⊥AM,可得PD⊥BE,所以PD⊥平面BEM,故平面BEM⊥平面PBD,所以直线BE在平面PBD内的射影为直线BM.而BE⊥EM,可得∠EBM为锐角,故∠EBM为直线BE与平面PBD所成的角.
依题意,有PD=2
,而M为PD中点,可得AM=
,进而BE=
.故在直角三角形BEM中,tan∠EBM=
=
=
,因此sin∠EBM=
,
所以直线BE与平面PBD所成角的正弦值为
.
(3)如图所示,在△PAC中,过点F作FH∥PA交AC于点H.因为PA⊥底面ABCD,所以FH⊥底面ABCD,从而FH⊥AC.又BF⊥AC,得AC⊥平面FHB,因此AC⊥BH.在底面ABCD内,可得CH=3HA,从而CF=3FP.在平面PDC内,作FG∥DC交PD于点G,于是DG=3GP.由于DC∥AB,故GF∥AB,所以A,B,F,G四点共面.由AB⊥PA,AB⊥AD,得AB⊥平面PAD,故AB⊥AG,所以∠PAG为二面角F AB P的平面角.
在△PAG中,PA=2,PG=
PD=
,∠APG=45°.由余弦定理可得AG=
,cos∠PAG=
,所以二面角F AB P的余弦值为
.
科目:高中数学 来源: 题型:
【题目】某公司销售部随机抽取了1000名销售员1天的销售记录,经统计,其柱状图如图.
该公司给出了两种日薪方案.
方案1:没有底薪,每销售一件薪资20元;
方案2:底薪90元,每日前5件的销售量没有奖励,超过5件的部分每件奖励20元.
(1)分别求出两种日薪方案中日工资y(单位:元)与销售件数n的函数关系式;
(2)若将频率视为概率,回答下列问题:
(Ⅰ)根据柱状图,试分别估计两种方案的日薪X(单位:元)的数学期望及方差;
(Ⅱ)如果你要应聘该公司的销售员,结合(Ⅰ)中的数据,根据统计学的思想,分析选择哪种薪资方案比较合适,并说明你的理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx
1,g(x)=x3
3tx+1(t>0).
(1)当a
时,求f(x)在区间[
,e]上的最值;
(2)讨论函数f(x)的单调性;
(3)若g(x)≤xex﹣m+2(e为自然对数的底数)对任意x∈[0,+∞)恒成立时m的最大值为1,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+2x,g(x)=x+ln x,h(x)=x-
-1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是________(由小到大).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数f(x)=(3m2﹣2m)x
在(0,+∞)上单调递增,g(x)=x2﹣4x+t.
(1)求实数m的值;
(2)当x∈[1,9]时,记f(x),g(x)的值域分别为集合A,B,设命题p:x∈A,命题q:x∈B,若命题p是命题q的充分不必要条件,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥
与直四棱柱
组合而成的几何体中,四边形
是菱形,
,
,
,
,
交
于
,
平面
,
为
的中点.
![]()
(1)证明:
平面
;
(2)动点
在线段
上(包括端点),若二面角
的余弦值为
,求
的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com