精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知二次函数的图象过点(0,—3),且的解集(1,3)。
(1)求的解析式;
(2)若当时,恒有求实数t的取值范围。

(1);(2)

解析试题分析:(1) 由题意可设二次函数    ……………2分
,∴  ∴      ……………4分
∴             ……………6分
(2) 当时,恒有成立,可知
恒成立              ……………8分

                  ……………10分
   故实数的取值范围为     ……………12分
考点:二次函数的性质;二次不等式的解法;基本不等式。
点评:解决恒成立问题常用变量分离法,变量分离法主要通过两个基本思想解决恒成立问题, 思路1:上恒成立;思路2: 上恒成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知某公司生产某品牌服装的年固定成本为10万元,每生产一千件,需要另投入2.7万元.设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.
(I)写出年利润(万元)关于年产量(千件)的函数关系式;
(Ⅱ)年生产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设函数的定义域为集合,集合
请你写出一个一元二次不等式,使它的解集为,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)设,写出数列的前5项;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为定义在上的奇函数,当时, 
(1)证明函数是增函数(2)求在(-1,1)上的解析式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)定义在实数R上的函数y= f(x)是偶函数,当x≥0时,.
(Ⅰ)求f(x)在R上的表达式;
(Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数经过点.
(1)求的值;(2)求在[0,1]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)建造一个容积为18立方米,深为2米的长方体有盖水池。如果池底和池壁每平方米的造价分别是200元和150元,那么如何建造,池的造价最低,为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=

查看答案和解析>>

同步练习册答案